Ernst Witt (26 June 1911 – 3 July 1991) was a German mathematician, one of the leading algebraists of his time.
Witt was born on the island of Alsen, then a part of the German Empire. Shortly after his birth, his parents moved the family to China to work as missionaries, and he did not return to Europe until he was nine.
After his schooling, Witt went to the University of Freiburg and the University of Göttingen. He joined the NSDAP (Nazi Party) and was an active party member. Witt was awarded a Ph.D. at the University of Göttingen in 1934 with a thesis titled: "Riemann-Roch theorem and zeta-Function in hypercomplexes" (Riemann-Rochscher Satz und Zeta-Funktion im Hyperkomplexen) that was supervised by Gustav Herglotz with Emmy Noether suggesting the topic for the doctorate. He qualified to become a lecturer and gave guest lectures in Göttingen and Hamburg. He became associated with the team led by Helmut Hasse who led his habilitation. In June 1936, he gave his habilitation lecture.
During World War II he joined a group of five mathematicians, recruited by Wilhelm Fenner, and which included Georg Aumann, Alexander Aigner, Oswald Teichmüller, Johann Friedrich Schultze and their leader professor Wolfgang Franz, to form the backbone of the new mathematical research department in the late 1930s, which would eventually be called: Section IVc of Cipher Department of the High Command of the Wehrmacht (abbr. OKW/Chi).
From 1937 until 1979, he taught at the University of Hamburg. He died in Hamburg in 1991, shortly after his 80th birthday.
Witt's work has been highly influential. His invention of the Witt vectors clarifies and generalizes the structure of the p-adic numbers. It has become fundamental to p-adic Hodge theory.
Witt was the founder of the theory of quadratic forms over an arbitrary field. He proved several of the key results, including the Witt cancellation theorem. He defined the Witt ring of all quadratic forms over a field, now a central object in the theory.
The Poincaré–Birkhoff–Witt theorem is basic to the study of Lie algebras.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, a Witt group of a field, named after Ernst Witt, is an abelian group whose elements are represented by symmetric bilinear forms over the field. Fix a field k of characteristic not equal to two. All vector spaces will be assumed to be finite-dimensional. We say that two spaces equipped with symmetric bilinear forms are equivalent if one can be obtained from the other by adding a metabolic quadratic space, that is, zero or more copies of a hyperbolic plane, the non-degenerate two-dimensional symmetric bilinear form with a norm 0 vector.
Helmut Hasse (ˈhasə; 25 August 1898 – 26 December 1979) was a German mathematician working in algebraic number theory, known for fundamental contributions to class field theory, the application of p-adic numbers to local class field theory and diophantine geometry (Hasse principle), and to local zeta functions. Hasse was born in Kassel, Province of Hesse-Nassau, the son of Judge Paul Reinhard Hasse, also written Haße (12 April 1868 – 1 June 1940, son of Friedrich Ernst Hasse and his wife Anna Von Reinhard) and his wife Margarethe Louise Adolphine Quentin (born 5 July 1872 in Milwaukee, daughter of retail toy merchant Adolph Quentin (b.
Classical Serre-Tate theory describes deformations of ordinary abelian varieties. It implies that every such variety has a canonical lift to characteristic zero and equips the base of its universal deformation with a Frobenius lifting and canonical multipl ...
We prove some new cases of the Grothendieck-Serre conjecture for classical groups. This is based on a new construction of the Gersten-Witt complex for Witt groups of Azumaya algebras with involution on regular semilocal rings, with explicit second residue ...
WILEY2022
We characterize the irreducible polynomials that occur as the characteristic polynomial of an automorphism of an even unimodular lattice of a given signature, generalizing a theorem of Gross and McMullen. As part of the proof, we give a general criterion i ...