Summary
In mathematics, a Witt group of a field, named after Ernst Witt, is an abelian group whose elements are represented by symmetric bilinear forms over the field. Fix a field k of characteristic not equal to two. All vector spaces will be assumed to be finite-dimensional. We say that two spaces equipped with symmetric bilinear forms are equivalent if one can be obtained from the other by adding a metabolic quadratic space, that is, zero or more copies of a hyperbolic plane, the non-degenerate two-dimensional symmetric bilinear form with a norm 0 vector. Each class is represented by the core form of a Witt decomposition. The Witt group of k is the abelian group W(k) of equivalence classes of non-degenerate symmetric bilinear forms, with the group operation corresponding to the orthogonal direct sum of forms. It is additively generated by the classes of one-dimensional forms. Although classes may contain spaces of different dimension, the parity of the dimension is constant across a class and so rk : W(k) → Z/2Z is a homomorphism. The elements of finite order in the Witt group have order a power of 2; the torsion subgroup is the kernel of the functorial map from W(k) to W(kpy), where kpy is the Pythagorean closure of k; it is generated by the Pfister forms with a non-zero sum of squares. If k is not formally real, then the Witt group is torsion, with exponent a power of 2. The height of the field k is the exponent of the torsion in the Witt group, if this is finite, or ∞ otherwise. The Witt group of k can be given a commutative ring structure, by using the tensor product of quadratic forms to define the ring product. This is sometimes called the Witt ring W(k), though the term "Witt ring" is often also used for a completely different ring of Witt vectors. To discuss the structure of this ring we assume that k is of characteristic not equal to 2, so that we may identify symmetric bilinear forms and quadratic forms. The kernel of the rank mod 2 homomorphism is a prime ideal, I, of the Witt ring termed the fundamental ideal.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.