Summary
In organic chemistry, a bent bond, also known as a banana bond, is a type of covalent chemical bond with a geometry somewhat reminiscent of a banana. The term itself is a general representation of electron density or configuration resembling a similar "bent" structure within small ring molecules, such as cyclopropane (C3H6) or as a representation of double or triple bonds within a compound that is an alternative to the sigma and pi bond model. Bent bonds are a special type of chemical bonding in which the ordinary hybridization state of two atoms making up a chemical bond are modified with increased or decreased s-orbital character in order to accommodate a particular molecular geometry. Bent bonds are found in strained organic compounds such as cyclopropane, oxirane and aziridine. In these compounds, it is not possible for the carbon atoms to assume the 109.5° bond angles with standard sp3 hybridization. Increasing the p-character to sp5 (i.e. s-density and p-density) makes it possible to reduce the bond angles to 60°. At the same time, the carbon-to-hydrogen bonds gain more s-character, which shortens them. In cyclopropane, the maximum electron density between two carbon atoms does not correspond to the internuclear axis, hence the name bent bond. In cyclopropane, the interorbital angle is 104°. This bending can be observed experimentally by X-ray diffraction of certain cyclopropane derivatives: the deformation density is outside the line of centers between the two carbon atoms. The carbon–carbon bond lengths are shorter than in a regular alkane bond: 151 pm versus 153 pm. Cyclobutane is a larger ring, but still has bent bonds. In this molecule, the carbon bond angles are 90° for the planar conformation and 88° for the puckered one. Unlike in cyclopropane, the C–C bond lengths actually increase rather than decrease; this is mainly due to 1,3-nonbonded steric repulsion. In terms of reactivity, cyclobutane is relatively inert and behaves like ordinary alkanes.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.