In topology, the Jordan curve theorem asserts that every Jordan curve (a plane simple closed curve) divides the plane into an "interior" region bounded by the curve and an "exterior" region containing all of the nearby and far away exterior points. Every continuous path connecting a point of one region to a point of the other intersects with the curve somewhere. While the theorem seems intuitively obvious, it takes some ingenuity to prove it by elementary means. "Although the JCT is one of the best known topological theorems, there are many, even among professional mathematicians, who have never read a proof of it." (). More transparent proofs rely on the mathematical machinery of algebraic topology, and these lead to generalizations to higher-dimensional spaces. The Jordan curve theorem is named after the mathematician Camille Jordan (1838–1922), who found its first proof. For decades, mathematicians generally thought that this proof was flawed and that the first rigorous proof was carried out by Oswald Veblen. However, this notion has been overturned by Thomas C. Hales and others. A Jordan curve or a simple closed curve in the plane R2 is the C of an injective continuous map of a circle into the plane, φ: S1 → R2. A Jordan arc in the plane is the image of an injective continuous map of a closed and bounded interval [a, b] into the plane. It is a plane curve that is not necessarily smooth nor algebraic. Alternatively, a Jordan curve is the image of a continuous map φ: [0,1] → R2 such that φ(0) = φ(1) and the restriction of φ to [0,1) is injective. The first two conditions say that C is a continuous loop, whereas the last condition stipulates that C has no self-intersection points. With these definitions, the Jordan curve theorem can be stated as follows: In contrast, the complement of a Jordan arc in the plane is connected. The Jordan curve theorem was independently generalized to higher dimensions by H. Lebesgue and L. E. J. Brouwer in 1911, resulting in the Jordan–Brouwer separation theorem. The proof uses homology theory.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (5)
MATH-201: Analysis III
Calcul différentiel et intégral. Eléments d'analyse complexe.
MATH-647: Topics on the Euler and Navier-Stokes equations
This topics course focuses on recent and classical fundamental results on the Euler and Navier-Stokes equations, such as global existence of weak solutions, (non)uniqueness results, blow-ups, partial
MATH-207(d): Analysis IV
The course studies the fundamental concepts of complex analysis and Laplace analysis with a view to their use to solve multidisciplinary scientific engineering problems.
Show more
Related lectures (33)
Green's Theorem in 2D: Applications
Explores the applications of Green's Theorem in 2D, emphasizing the importance of regular domains for successful integration.
Residues Theorem
Explores the Residues Theorem and the classification of holomorphic functions.
Geometrical Aspects of Differential Operators
Explores differential operators, regular curves, norms, and injective functions, addressing questions on curves' properties, norms, simplicity, and injectivity.
Show more
Related publications (24)

Resolving the vicinity of supermassive black holes with gravitational microlensing

Georgios Vernardos

Upcoming wide-field surveys will discover thousands of new strongly lensed quasars which will be monitored with unprecedented cadence by the Legacy Survey of Space and Time (LSST). Many of these quasars will undergo caustic-crossing events over the 10-yr L ...
Oxford Univ Press2024

Robust numerical integration on curved polyhedra based on folded decompositions

Annalisa Buffa, Pablo Antolin Sanchez, Xiaodong Wei

We present a novel method to perform numerical integration over curved polyhedra enclosed by high-order parametric surfaces. Such a polyhedron is first decomposed into a set of triangular and/or rectangular pyramids, whose certain faces correspond to the g ...
ELSEVIER SCIENCE SA2022

Variations on R-curves and traction-separation relations in DCB specimens loaded under end opening forces or pure moments

John Botsis, Georgios Pappas

In this work the differences in R-curve response and traction-separation relations due to a finite damage zone or large-scale bridging (LSB) in mode I fracture on double cantilever beams (DCB) were investigated under end opening forces (EOF) and pure momen ...
PERGAMON-ELSEVIER SCIENCE LTD2020
Show more
Related concepts (16)
Simple polygon
In geometry, a simple polygon is a polygon that does not intersect itself and has no holes. That is, they are piecewise-linear Jordan curves consisting of finitely many line segments. They include as special cases the convex polygons, star-shaped polygons, and monotone polygons. The sum of external angles of a simple polygon is . Every simple polygon with sides can be triangulated by of its diagonals, and by the art gallery theorem its interior is visible from some of its vertices.
Domain (mathematical analysis)
In mathematical analysis, a domain or region is a non-empty connected open set in a topological space, in particular any non-empty connected open subset of the real coordinate space Rn or the complex coordinate space Cn. A connected open subset of coordinate space is frequently used for the domain of a function, but in general, functions may be defined on sets that are not topological spaces.
Euclidean plane
In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted E2. It is a geometric space in which two real numbers are required to determine the position of each point. It is an affine space, which includes in particular the concept of parallel lines. It has also metrical properties induced by a distance, which allows to define circles, and angle measurement. A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane.
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.