In topology, the Jordan curve theorem asserts that every Jordan curve (a plane simple closed curve) divides the plane into an "interior" region bounded by the curve and an "exterior" region containing all of the nearby and far away exterior points. Every continuous path connecting a point of one region to a point of the other intersects with the curve somewhere. While the theorem seems intuitively obvious, it takes some ingenuity to prove it by elementary means. "Although the JCT is one of the best known topological theorems, there are many, even among professional mathematicians, who have never read a proof of it." (). More transparent proofs rely on the mathematical machinery of algebraic topology, and these lead to generalizations to higher-dimensional spaces.
The Jordan curve theorem is named after the mathematician Camille Jordan (1838–1922), who found its first proof. For decades, mathematicians generally thought that this proof was flawed and that the first rigorous proof was carried out by Oswald Veblen. However, this notion has been overturned by Thomas C. Hales and others.
A Jordan curve or a simple closed curve in the plane R2 is the C of an injective continuous map of a circle into the plane, φ: S1 → R2. A Jordan arc in the plane is the image of an injective continuous map of a closed and bounded interval [a, b] into the plane. It is a plane curve that is not necessarily smooth nor algebraic.
Alternatively, a Jordan curve is the image of a continuous map φ: [0,1] → R2 such that φ(0) = φ(1) and the restriction of φ to [0,1) is injective. The first two conditions say that C is a continuous loop, whereas the last condition stipulates that C has no self-intersection points.
With these definitions, the Jordan curve theorem can be stated as follows:
In contrast, the complement of a Jordan arc in the plane is connected.
The Jordan curve theorem was independently generalized to higher dimensions by H. Lebesgue and L. E. J. Brouwer in 1911, resulting in the Jordan–Brouwer separation theorem.
The proof uses homology theory.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This topics course focuses on recent and classical fundamental results on the Euler and Navier-Stokes equations, such as global existence of weak solutions, (non)uniqueness results, blow-ups, partial
Le cours étudie les concepts fondamentaux de l'analyse complexe et de l'analyse de Laplace en vue de leur utilisation
pour résoudre des problèmes pluridisciplinaires d'ingénierie scientifique.
In geometry, a simple polygon is a polygon that does not intersect itself and has no holes. That is, they are piecewise-linear Jordan curves consisting of finitely many line segments. They include as special cases the convex polygons, star-shaped polygons, and monotone polygons. The sum of external angles of a simple polygon is . Every simple polygon with sides can be triangulated by of its diagonals, and by the art gallery theorem its interior is visible from some of its vertices.
In mathematical analysis, a domain or region is a non-empty connected open set in a topological space, in particular any non-empty connected open subset of the real coordinate space Rn or the complex coordinate space Cn. A connected open subset of coordinate space is frequently used for the domain of a function, but in general, functions may be defined on sets that are not topological spaces.
In mathematics, a Euclidean plane is a Euclidean space of dimension two, denoted E2. It is a geometric space in which two real numbers are required to determine the position of each point. It is an affine space, which includes in particular the concept of parallel lines. It has also metrical properties induced by a distance, which allows to define circles, and angle measurement. A Euclidean plane with a chosen Cartesian coordinate system is called a Cartesian plane.
Upcoming wide-field surveys will discover thousands of new strongly lensed quasars which will be monitored with unprecedented cadence by the Legacy Survey of Space and Time (LSST). Many of these quasars will undergo caustic-crossing events over the 10-yr L ...
Oxford Univ Press2024
, ,
We present a novel method to perform numerical integration over curved polyhedra enclosed by high-order parametric surfaces. Such a polyhedron is first decomposed into a set of triangular and/or rectangular pyramids, whose certain faces correspond to the g ...
In this work the differences in R-curve response and traction-separation relations due to a finite damage zone or large-scale bridging (LSB) in mode I fracture on double cantilever beams (DCB) were investigated under end opening forces (EOF) and pure momen ...