Summary
In topology, the Jordan curve theorem asserts that every Jordan curve (a plane simple closed curve) divides the plane into an "interior" region bounded by the curve and an "exterior" region containing all of the nearby and far away exterior points. Every continuous path connecting a point of one region to a point of the other intersects with the curve somewhere. While the theorem seems intuitively obvious, it takes some ingenuity to prove it by elementary means. "Although the JCT is one of the best known topological theorems, there are many, even among professional mathematicians, who have never read a proof of it." (). More transparent proofs rely on the mathematical machinery of algebraic topology, and these lead to generalizations to higher-dimensional spaces. The Jordan curve theorem is named after the mathematician Camille Jordan (1838–1922), who found its first proof. For decades, mathematicians generally thought that this proof was flawed and that the first rigorous proof was carried out by Oswald Veblen. However, this notion has been overturned by Thomas C. Hales and others. A Jordan curve or a simple closed curve in the plane R2 is the C of an injective continuous map of a circle into the plane, φ: S1 → R2. A Jordan arc in the plane is the image of an injective continuous map of a closed and bounded interval [a, b] into the plane. It is a plane curve that is not necessarily smooth nor algebraic. Alternatively, a Jordan curve is the image of a continuous map φ: [0,1] → R2 such that φ(0) = φ(1) and the restriction of φ to [0,1) is injective. The first two conditions say that C is a continuous loop, whereas the last condition stipulates that C has no self-intersection points. With these definitions, the Jordan curve theorem can be stated as follows: In contrast, the complement of a Jordan arc in the plane is connected. The Jordan curve theorem was independently generalized to higher dimensions by H. Lebesgue and L. E. J. Brouwer in 1911, resulting in the Jordan–Brouwer separation theorem. The proof uses homology theory.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.