**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.

Publication# Robust numerical integration on curved polyhedra based on folded decompositions

Abstract

We present a novel method to perform numerical integration over curved polyhedra enclosed by high-order parametric surfaces. Such a polyhedron is first decomposed into a set of triangular and/or rectangular pyramids, whose certain faces correspond to the given parametric surfaces. Each pyramid serves as an integration cell with a geometric mapping from a standard parent domain (e.g., a unit cube), where the tensor-product Gauss quadrature is adopted. As no constraint is imposed on the decomposition, certain resulting pyramids may intersect with themselves, and thus their geometric mappings may present negative Jacobian values. We call such cells folded cells and refer to the corresponding decomposition as a folded decomposition. We show that folded cells do not cause any issues in practice as they are only used to numerically compute certain integrals of interest. The same idea can be applied to planar curved polygons as well. We demonstrate both theoretically and numerically that folded cells can retain the same accuracy as the cells with strictly positive Jacobians. On the other hand, folded cells allow for a much easier and much more flexible decomposition for general curved polyhedra, on which one can robustly compute integrals. In the end, we show that folded cells can flexibly and robustly accommodate real-world complex geometries by presenting several examples in the context of immersed isogeometric analysis, where involved sharp features can be well respected in generating integration cells.(c) 2022 Elsevier B.V. All rights reserved.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related publications (40)

Related concepts (41)

Ontological neighbourhood

Numerical integration

In analysis, numerical integration comprises a broad family of algorithms for calculating the numerical value of a definite integral, and by extension, the term is also sometimes used to describe the numerical solution of differential equations. This article focuses on calculation of definite integrals. The term numerical quadrature (often abbreviated to quadrature) is more or less a synonym for numerical integration, especially as applied to one-dimensional integrals.

Pyramid

A pyramid (from πυραμίς pyramís) is a structure whose outer surfaces are triangular and converge to a single step at the top, making the shape roughly a pyramid in the geometric sense. The base of a pyramid can be trilateral, quadrilateral, or of any polygon shape. As such, a pyramid has at least three outer triangular surfaces (at least four faces including the base). The square pyramid, with a square base and four triangular outer surfaces, is a common version.

Polyhedron

In geometry, a polyhedron (: polyhedra or polyhedrons; ) is a three-dimensional shape with flat polygonal faces, straight edges and sharp corners or vertices. A convex polyhedron is a polyhedron that bounds a convex set. Every convex polyhedron can be constructed as the convex hull of its vertices, and for every finite set of points, not all on the same plane, the convex hull is a convex polyhedron. Cubes and pyramids are examples of convex polyhedra. A polyhedron is a 3-dimensional example of a polytope, a more general concept in any number of dimensions.

Optimized Schwarz Methods (OSMs) are based on optimized transmission conditions along the interfaces between the subdomains. Optimized transmission conditions are derived at the theoretical level, using techniques developed in the last decades. The hypothe ...

Elisabeth Agoritsas, Thierry Giamarchi

Elastic interfaces display scale-invariant geometrical fluctuations at sufficiently large lengthscales. Their asymptotic static roughness then follows a power-law behavior, whose associated exponent provides a robust signature of the universality class to ...

2022The objective of this paper is to investigate a new numerical method for the approximation of the self-diffusion matrix of a tagged particle process defined on a grid. While standard numerical methods make use of long-time averages of empirical means of de ...