Phase-contrast imaging is a method of that has a range of different applications. It measures differences in the refractive index of different materials to differentiate between structures under analysis. In conventional light microscopy, phase contrast can be employed to distinguish between structures of similar transparency, and to examine crystals on the basis of their double refraction. This has uses in biological, medical and geological science. In X-ray tomography, the same physical principles can be used to increase image contrast by highlighting small details of differing refractive index within structures that are otherwise uniform. In transmission electron microscopy (TEM), phase contrast enables very high resolution (HR) imaging, making it possible to distinguish features a few Angstrom apart (at this point highest resolution is 40 pm).
Phase Contrast imaging is commonly used in atomic physics to describe a range of techniques for dispersively imaging Ultracold atoms. Dispersion is the phenomena of the propagation of electromagnetic fields (light) in matter. In general, the Refractive index of a material, which alters the Phase velocity and Refraction of the field, depends on the Wavelength or Frequency of the light. This is what gives rise to the familiar behavior of prisms, which are seen to split light into its constituent wavelengths. Microscopically, we may think of this behavior as arising from the interaction of the electromagnetic wave with the atomic dipoles. The oscillating force field in turn causes the dipoles to oscillate and in doing so reradiate light with the same polarization and frequency, albeit delayed or phase-shifted from the incident wave. These waves interfere to produce the altered wave which propagates through the medium. If the light is monochromatic (that is, an electromagnetic wave of a single frequency or wavelength), with a frequency close to an atomic transition, the atom will also absorb photons from the light field, reducing the amplitude of the incident wave.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Learn how principles of basic science are integrated into major biomedical imaging modalities and the different techniques used, such as X-ray computed tomography (CT), ultrasounds and positron emissi
Learn about magnetic resonance, from the physical principles of Nuclear Magnetic Resonance (NMR) to the basic concepts of image reconstruction (MRI).
Ce cours d'introduction à la microscopie a pour but de donner un apperçu des différentes techniques d'analyse de la microstructure et de la composition des matériaux, en particulier celles liées aux m
With this course, the student will learn advanced methods in transmission electron microscopy, especially what is the electron optical setup involved in the acquisition, and how to interpret the data.
Introduction to the different contrast enhancing methods in optical microscopy. Basic hands-on experience with optical microscopes at EPFL's BioImaging and Optics Facility. How to investigate biologic
Phase-contrast X-ray imaging or phase-sensitive X-ray imaging is a general term for different technical methods that use information concerning changes in the phase of an X-ray beam that passes through an object in order to create its images. Standard X-ray imaging techniques like radiography or computed tomography (CT) rely on a decrease of the X-ray beam's intensity (attenuation) when traversing the sample, which can be measured directly with the assistance of an X-ray detector.
NOTOC Phase-contrast microscopy (PCM) is an optical microscopy technique that converts phase shifts in light passing through a transparent specimen to brightness changes in the image. Phase shifts themselves are invisible, but become visible when shown as brightness variations. When light waves travel through a medium other than a vacuum, interaction with the medium causes the wave amplitude and phase to change in a manner dependent on properties of the medium.
The optical microscope, also referred to as a light microscope, is a type of microscope that commonly uses visible light and a system of lenses to generate magnified images of small objects. Optical microscopes are the oldest design of microscope and were possibly invented in their present compound form in the 17th century. Basic optical microscopes can be very simple, although many complex designs aim to improve resolution and sample contrast. The object is placed on a stage and may be directly viewed through one or two eyepieces on the microscope.
Phase imaging is widely used in biomedical imaging, sensing, and material characterization, among other fields. However, direct imaging of phase objects with subwavelength resolution remains a challenge. Here, we demonstrate subwavelength imaging of phase ...
Phase contrast imaging (PCI) is an established and powerful technique for measuring density fluctuations in plasmas and has been successfully applied to several fusion devices. Rooted in a concept first developed for microscopy, PCI belongs to the category ...
2024
, , ,
Here, we introduce a design, fabrication, and control methodology for large amplitude torsional microactuators powered by ultrasound. The microactuators are 3D printed from two polymers with drastically different elastic moduli as a monolithic compliant me ...