Distribution of the product of two random variables
Summary
A product distribution is a probability distribution constructed as the distribution of the product of random variables having two other known distributions. Given two statistically independent random variables X and Y, the distribution of the random variable Z that is formed as the product is a product distribution.
The product distribution is the PDF of the product of sample values. This is not the same as the product of their PDF's yet the concepts are often ambiguously termed as "product of Gaussians".
Algebra of random variables
The product is one type of algebra for random variables: Related to the product distribution are the ratio distribution, sum distribution (see List of convolutions of probability distributions) and difference distribution. More generally, one may talk of combinations of sums, differences, products and ratios.
Many of these distributions are described in Melvin D. Springer's book from 1979 The Algebra of Random Variables.
If and are two independent, continuous random variables, described by probability density functions and then the probability density function of is
We first write the cumulative distribution function of starting with its definition
We find the desired probability density function by taking the derivative of both sides with respect to . Since on the right hand side, appears only in the integration limits, the derivative is easily performed using the fundamental theorem of calculus and the chain rule. (Note the negative sign that is needed when the variable occurs in the lower limit of the integration.)
where the absolute value is used to conveniently combine the two terms.
A faster more compact proof begins with the same step of writing the cumulative distribution of starting with its definition:
where is the Heaviside step function and serves to limit the region of integration to values of and satisfying .
We find the desired probability density function by taking the derivative of both sides with respect to .
where we utilize the translation and scaling properties of the Dirac delta function .
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In this course, various aspects of probability theory are considered. The first part is devoted to the main theorems in the field (law of large numbers, central limit theorem, concentration inequaliti
Le cours est une introduction à la théorie des probabilités. Le but sera d'introduire le formalisme moderne (basé sur la notion de mesure) et de lier celui-ci à l'aspect "intuitif" des probabilités.
In probability theory, calculation of the sum of normally distributed random variables is an instance of the arithmetic of random variables. This is not to be confused with the sum of normal distributions which forms a mixture distribution. Let X and Y be independent random variables that are normally distributed (and therefore also jointly so), then their sum is also normally distributed. i.e., if then This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.
In probability theory, a log-normal (or lognormal) distribution is a continuous probability distribution of a random variable whose logarithm is normally distributed. Thus, if the random variable X is log-normally distributed, then Y = ln(X) has a normal distribution. Equivalently, if Y has a normal distribution, then the exponential function of Y, X = exp(Y), has a log-normal distribution. A random variable which is log-normally distributed takes only positive real values.
Advances in computing have enabled widespread access to pose estimation, creating new sources of data streams. Unlike mock set-ups for data collection, tapping into these data streams through on-device active learning allows us to directly sample from the ...
Given two jointly distributed random variables (X,Y), a functional representation of X is a random variable Z independent of Y, and a deterministic function g(⋅,⋅) such that X=g(Y,Z). The problem of finding a minimum entropy functional representation is kn ...
The quantification of uncertainties can be particularly challenging for problems requiring long-time integration as the structure of the random solution might considerably change over time. In this respect, dynamical low-rank approximation (DLRA) is very a ...