Concept

Sum of normally distributed random variables

In probability theory, calculation of the sum of normally distributed random variables is an instance of the arithmetic of random variables. This is not to be confused with the sum of normal distributions which forms a mixture distribution. Let X and Y be independent random variables that are normally distributed (and therefore also jointly so), then their sum is also normally distributed. i.e., if then This means that the sum of two independent normally distributed random variables is normal, with its mean being the sum of the two means, and its variance being the sum of the two variances (i.e., the square of the standard deviation is the sum of the squares of the standard deviations). In order for this result to hold, the assumption that X and Y are independent cannot be dropped, although it can be weakened to the assumption that X and Y are jointly, rather than separately, normally distributed. (See here for an example.) The result about the mean holds in all cases, while the result for the variance requires uncorrelatedness, but not independence. The characteristic function of the sum of two independent random variables X and Y is just the product of the two separate characteristic functions: of X and Y. The characteristic function of the normal distribution with expected value μ and variance σ2 is So This is the characteristic function of the normal distribution with expected value and variance Finally, recall that no two distinct distributions can both have the same characteristic function, so the distribution of X + Y must be just this normal distribution. For independent random variables X and Y, the distribution fZ of Z = X + Y equals the convolution of fX and fY: Given that fX and fY are normal densities, Substituting into the convolution: Defining , and completing the square: The expression in the integral is a normal density distribution on x, and so the integral evaluates to 1. The desired result follows: It can be shown that the Fourier transform of a Gaussian, , is By the convolution theorem: First consider the normalized case when X, Y ~ N(0, 1), so that their PDFs are and Let Z = X + Y.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (29)
BIO-369: Randomness and information in biological data
Biology is becoming more and more a data science, as illustrated by the explosion of available genome sequences. This course aims to show how we can make sense of such data and harness it in order to
MATH-432: Probability theory
The course is based on Durrett's text book Probability: Theory and Examples.
It takes the measure theory approach to probability theory, wherein expectations are simply abstract integrals.
MATH-131: Probability and statistics
Le cours présente les notions de base de la théorie des probabilités et de l'inférence statistique. L'accent est mis sur les concepts principaux ainsi que les méthodes les plus utilisées.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.