Summary
Hydrothermal circulation in its most general sense is the circulation of hot water (Ancient Greek ὕδωρ, water, and θέρμη, heat ). Hydrothermal circulation occurs most often in the vicinity of sources of heat within the Earth's crust. In general, this occurs near volcanic activity, but can occur in the shallow to mid crust along deeply penetrating fault irregularities or in the deep crust related to the intrusion of granite, or as the result of orogeny or metamorphism. Hydrothermal circulation often results in hydrothermal mineral deposits. Hydrothermal circulation in the oceans is the passage of the water through mid-oceanic ridge systems. The term includes both the circulation of the well-known, high-temperature vent waters near the ridge crests, and the much-lower-temperature, diffuse flow of water through sediments and buried basalts further from the ridge crests. The former circulation type is sometimes termed "active", and the latter "passive". In both cases, the principle is the same: Cold, dense seawater sinks into the basalt of the seafloor and is heated at depth whereupon it rises back to the rock-ocean water interface due to its lesser density. The heat source for the active vents is the newly formed basalt, and, for the highest temperature vents, the underlying magma chamber. The heat source for the passive vents is the still-cooling older basalts. Heat flow studies of the seafloor suggest that basalts within the oceanic crust take millions of years to completely cool as they continue to support passive hydrothermal circulation systems. Hydrothermal vents are locations on the seafloor where hydrothermal fluids mix into the overlying ocean. Perhaps the best-known vent forms are the naturally occurring chimneys referred to as black smokers. Hydrothermal circulation is not limited to ocean ridge environments. Hydrothermal circulating convection cells can exist in any place an anomalous source of heat, such as an intruding magma or volcanic vent, comes into contact with the groundwater system where permeability allows flow.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.