Summary
Metasomatism (from the Greek μετά metá "change" and σῶμα sôma "body") is the chemical alteration of a rock by hydrothermal and other fluids. It is the replacement of one rock by another of different mineralogical and chemical composition. The minerals which compose the rocks are dissolved and new mineral formations are deposited in their place. Dissolution and deposition occur simultaneously and the rock remains solid. Synonyms of the word metasomatism are metasomatosis and metasomatic process. The word metasomatose can be used as a name for specific varieties of metasomatism (for example Mg-metasomatose and Na-metasomatose). Metasomatism can occur via the action of hydrothermal fluids from an igneous or metamorphic source. In the igneous environment, metasomatism creates skarns, greisen, and may affect hornfels in the contact metamorphic aureole adjacent to an intrusive rock mass. In the metamorphic environment, metasomatism is created by mass transfer from a volume of metamorphic rock at higher stress and temperature into a zone with lower stress and temperature, with metamorphic hydrothermal solutions acting as a solvent. This can be envisaged as the metamorphic rocks within the deep crust losing fluids and dissolved mineral components as hydrous minerals break down, with this fluid percolating up into the shallow levels of the crust to chemically change and alter these rocks. This mechanism implies that metasomatism is open system behaviour, which is different from classical metamorphism which is the in-situ mineralogical change of a rock without appreciable change in the chemistry of the rock. Because metamorphism usually requires water in order to facilitate metamorphic reactions, metamorphism nearly always occurs with metasomatism. Further, because metasomatism is a mass transfer process, it is not restricted to the rocks which are changed by addition of chemical elements and minerals or hydrous compounds. In all cases, to produce a metasomatic rock some other rock is also metasomatised, if only by dehydration reactions with minimal chemical change.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ontological neighbourhood
Related courses (2)
CIVIL-211: Geology
Les ingénieurs civils exercent leurs activités en constante interaction avec le sous-sol. Le cours de géologie donne aux étudiants les bases en Géosciences nécessaires à une ingénierie bien intégrée d
ENV-525: Physics and hydrology of snow
This course covers principles of snow physics, snow hydrology, snow-atmosphere interaction and snow modeling. It transmits sound understanding of physical processes within the snow and at its interfac
Related publications (50)
Related concepts (16)
Komatiite
Komatiite (koʊˈmɑːtiˌaɪt) is a type of ultramafic mantle-derived volcanic rock defined as having crystallised from a lava of at least 18 wt% magnesium oxide (MgO). It is classified as a 'picritic rock'. Komatiites have low silicon, potassium and aluminium, and high to extremely high magnesium content. Komatiite was named for its type locality along the Komati River in South Africa, and frequently displays spinifex texture composed of large dendritic plates of olivine and pyroxene.
Hydrothermal circulation
Hydrothermal circulation in its most general sense is the circulation of hot water (Ancient Greek ὕδωρ, water, and θέρμη, heat ). Hydrothermal circulation occurs most often in the vicinity of sources of heat within the Earth's crust. In general, this occurs near volcanic activity, but can occur in the shallow to mid crust along deeply penetrating fault irregularities or in the deep crust related to the intrusion of granite, or as the result of orogeny or metamorphism. Hydrothermal circulation often results in hydrothermal mineral deposits.
Normative mineralogy
Normative mineralogy is a calculation of the composition of a rock sample that estimates the idealised mineralogy of a rock based on a quantitative chemical analysis according to the principles of geochemistry. Normative mineral calculations can be achieved via either the CIPW Norm or the Barth-Niggli Norm (also known as the Cation Norm). Normative calculations are used to produce an idealised mineralogy of a crystallized melt. First, a rock is chemically analysed to determine the elemental constituents.
Show more