Summary
A safety-critical system (SCS) or life-critical system is a system whose failure or malfunction may result in one (or more) of the following outcomes: death or serious injury to people loss or severe damage to equipment/property environmental harm A safety-related system (or sometimes safety-involved system) comprises everything (hardware, software, and human aspects) needed to perform one or more safety functions, in which failure would cause a significant increase in the safety risk for the people or environment involved. Safety-related systems are those that do not have full responsibility for controlling hazards such as loss of life, severe injury or severe environmental damage. The malfunction of a safety-involved system would only be that hazardous in conjunction with the failure of other systems or human error. Some safety organizations provide guidance on safety-related systems, for example the Health and Safety Executive (HSE) in the United Kingdom. Risks of this sort are usually managed with the methods and tools of safety engineering. A safety-critical system is designed to lose less than one life per billion (109) hours of operation. Typical design methods include probabilistic risk assessment, a method that combines failure mode and effects analysis (FMEA) with fault tree analysis. Safety-critical systems are increasingly computer-based. Safety-critical systems are a concept often used together with the Swiss cheese model to represent (usually in a bow-tie diagram) how a threat can escalate to a major accident through the failure of multiple critical barriers. This use has become common especially in the domain of process safety, in particular when applied to oil and gas drilling and production both for illustrative purposes and to support other processes, such as asset integrity management and incident investigation. Several reliability regimes for safety-critical systems exist: Fail-operational systems continue to operate when their control systems fail.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.