Summary
Galilean invariance or Galilean relativity states that the laws of motion are the same in all inertial frames of reference. Galileo Galilei first described this principle in 1632 in his Dialogue Concerning the Two Chief World Systems using the example of a ship travelling at constant velocity, without rocking, on a smooth sea; any observer below the deck would not be able to tell whether the ship was moving or stationary. Specifically, the term Galilean invariance today usually refers to this principle as applied to Newtonian mechanics, that is, Newton's laws of motion hold in all frames related to one another by a Galilean transformation. In other words, all frames related to one another by such a transformation are inertial (meaning, Newton's equation of motion is valid in these frames). In this context it is sometimes called Newtonian relativity. Among the axioms from Newton's theory are: There exists an absolute space, in which Newton's laws are true. An inertial frame is a reference frame in relative uniform motion to absolute space. All inertial frames share a universal time. Galilean relativity can be shown as follows. Consider two inertial frames S and S' . A physical event in S will have position coordinates r = (x, y, z) and time t in S, and r' = (x' , y' , z' ) and time t' in S' . By the second axiom above, one can synchronize the clock in the two frames and assume t = t' . Suppose S' is in relative uniform motion to S with velocity v. Consider a point object whose position is given by functions r' (t) in S' and r(t) in S. We see that The velocity of the particle is given by the time derivative of the position: Another differentiation gives the acceleration in the two frames: It is this simple but crucial result that implies Galilean relativity. Assuming that mass is invariant in all inertial frames, the above equation shows Newton's laws of mechanics, if valid in one frame, must hold for all frames. But it is assumed to hold in absolute space, therefore Galilean relativity holds.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related people (1)