Concept

Statics

Summary
Statics is the branch of classical mechanics that is concerned with the analysis of force and torque acting on a physical system that does not experience an acceleration, but rather, is in static equilibrium with its environment. If is the total of the forces acting on the system, is the mass of the system and is the acceleration of the system, Newton's second law states that (the bold font indicates a vector quantity, i.e. one with both magnitude and direction). If , then . As for a system in static equilibrium, the acceleration equals zero, the system is either at rest, or its center of mass moves at constant velocity. The application of the assumption of zero acceleration to the summation of moments acting on the system leads to , where is the summation of all moments acting on the system, is the moment of inertia of the mass and is the angular acceleration of the system. For a system where , it is also true that Together, the equations (the 'first condition for equilibrium') and (the 'second condition for equilibrium') can be used to solve for unknown quantities acting on the system. Archimedes (c. 287–c. 212 BC) did pioneering work in statics. Later developments in the field of statics are found in works of Thebit. Force is the action of one body on another. A force is either a push or a pull, and it tends to move a body in the direction of its action. The action of a force is characterized by its magnitude, by the direction of its action, and by its point of application. Thus, force is a vector quantity, because its effect depends on the direction as well as on the magnitude of the action. Forces are classified as either contact or body forces. A contact force is produced by direct physical contact; an example is the force exerted on a body by a supporting surface. A body force is generated by virtue of the position of a body within a force field such as a gravitational, electric, or magnetic field and is independent of contact with any other body. An example of a body force is the weight of a body in the Earth's gravitational field.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.