Statics is the branch of classical mechanics that is concerned with the analysis of force and torque acting on a physical system that does not experience an acceleration, but rather, is in static equilibrium with its environment. If is the total of the forces acting on the system, is the mass of the system and is the acceleration of the system, Newton's second law states that (the bold font indicates a vector quantity, i.e. one with both magnitude and direction). If , then . As for a system in static equilibrium, the acceleration equals zero, the system is either at rest, or its center of mass moves at constant velocity.
The application of the assumption of zero acceleration to the summation of moments acting on the system leads to , where is the summation of all moments acting on the system, is the moment of inertia of the mass and is the angular acceleration of the system. For a system where , it is also true that
Together, the equations (the 'first condition for equilibrium') and (the 'second condition for equilibrium') can be used to solve for unknown quantities acting on the system.
Archimedes (c. 287–c. 212 BC) did pioneering work in statics.
Later developments in the field of statics are found in works of Thebit.
Force is the action of one body on another. A force is either a push or a pull, and it tends to move a body in the direction of its action. The action of a force is characterized by its magnitude, by the direction of its action, and by its point of application. Thus, force is a vector quantity, because its effect depends on the direction as well as on the magnitude of the action.
Forces are classified as either contact or body forces. A contact force is produced by direct physical contact; an example is the force exerted on a body by a supporting surface. A body force is generated by virtue of the position of a body within a force field such as a gravitational, electric, or magnetic field and is independent of contact with any other body. An example of a body force is the weight of a body in the Earth's gravitational field.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Space environment is different from what we can experience on Earth, requiring specific design approaches in order to achieve reliable operations. Engineers must hence face new challenges stimulating
L'étudiant acquiert une initiation théorique à la méthode des éléments finis qui constitue la technique la plus courante pour la résolution de problèmes elliptiques en mécanique. Il apprend à applique
Galileo di Vincenzo Bonaiuti de' Galilei (15 February 1564 – 8 January 1642), commonly referred to as Galileo Galilei (ˌɡælᵻˈleɪoʊ_ˌɡælᵻˈleɪ , USalsoˌɡælᵻˈliːoʊ_- , ɡaliˈlɛːo ɡaliˈlɛi) or simply Galileo, was an Italian astronomer, physicist and engineer, sometimes described as a polymath. He was born in the city of Pisa, then part of the Duchy of Florence. Galileo has been called the father of observational astronomy, modern-era classical physics, the scientific method, and modern science.
Classical mechanics is a physical theory describing the motion of macroscopic objects, from projectiles to parts of machinery and astronomical objects, such as spacecraft, planets, stars, and galaxies. For objects governed by classical mechanics, if the present state is known, it is possible to predict how it will move in the future (determinism), and how it has moved in the past (reversibility). The "classical" in "classical mechanics" does not refer classical antiquity, as it might in, say, classical architecture.
In physics and mechanics, torque is the rotational analogue of linear force. It is also referred to as the moment of force (also abbreviated to moment). It describes the rate of change of angular momentum that would be imparted to an isolated body. The concept originated with the studies by Archimedes of the usage of levers, which is reflected in his famous quote: "Give me a lever and a place to stand and I will move the Earth". Just as a linear force is a push or a pull applied to a body, a torque can be thought of as a twist applied to an object with respect to a chosen point.
The purpose of this paper is to assess the influence of soil-structure interaction and site effects on the seismic behavior of steel moment-resisting frames, with a view to describing the underlying “physics” behind the damage mechanisms triggered. We exam ...
Monolithic integrated circuits (ICs) have been miniaturized over the past five decades, and today their components range in size from hundreds of microns to several nanometers. Making point contact with electrical samples under a microscope is referred to ...
We study the glass transition by exploring a broad class of kinetic rules that can significantly modify the normal dynamics of supercooled liquids while maintaining thermal equilibrium. Beyond the usual dynamics of liquids, this class includes dynamics in ...