This table shows the 11 convex uniform tilings (regular and semiregular) of the Euclidean plane, and their dual tilings.
There are three regular and eight semiregular tilings in the plane. The semiregular tilings form new tilings from their duals, each made from one type of irregular face.
John Conway called these uniform duals Catalan tilings, in parallel to the Catalan solid polyhedra.
Uniform tilings are listed by their vertex configuration, the sequence of faces that exist on each vertex. For example 4.8.8 means one square and two octagons on a vertex.
These 11 uniform tilings have 32 different uniform colorings. A uniform coloring allows identical sided polygons at a vertex to be colored differently, while still maintaining vertex-uniformity and transformational congruence between vertices. (Note: Some of the tiling images shown below are not color-uniform)
In addition to the 11 convex uniform tilings, there are also 14 known nonconvex tilings, using star polygons, and reverse orientation vertex configurations. A further 28 uniform tilings are known using apeirogons. If zigzags are also allowed, there are 23 more known uniform tilings and 10 more known families depending on a parameter: in 8 cases the parameter is continuous, and in the other 2 it is discrete. The set is not known to be complete.
In the 1987 book, Tilings and Patterns, Branko Grünbaum calls the vertex-uniform tilings Archimedean, in parallel to the Archimedean solids. Their dual tilings are called Laves tilings in honor of crystallographer Fritz Laves. They're also called Shubnikov–Laves tilings after Aleksei Shubnikov. John Conway called the uniform duals Catalan tilings, in parallel to the Catalan solid polyhedra.
The Laves tilings have vertices at the centers of the regular polygons, and edges connecting centers of regular polygons that share an edge. The tiles of the Laves tilings are called planigons. This includes the 3 regular tiles (triangle, square and hexagon) and 8 irregular ones. Each vertex has edges evenly spaced around it.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In geometry, a uniform tiling is a tessellation of the plane by regular polygon faces with the restriction of being vertex-transitive. Uniform tilings can exist in both the Euclidean plane and hyperbolic plane. Uniform tilings are related to the finite uniform polyhedra which can be considered uniform tilings of the sphere. Most uniform tilings can be made from a Wythoff construction starting with a symmetry group and a singular generator point inside of the fundamental domain.
In geometry, the truncated trihexagonal tiling is one of eight semiregular tilings of the Euclidean plane. There are one square, one hexagon, and one dodecagon on each vertex. It has Schläfli symbol of tr{3,6}. There is only one uniform coloring of a truncated trihexagonal tiling, with faces colored by polygon sides. A 2-uniform coloring has two colors of hexagons. 3-uniform colorings can have 3 colors of dodecagons or 3 colors of squares.
In geometry, the truncated square tiling is a semiregular tiling by regular polygons of the Euclidean plane with one square and two octagons on each vertex. This is the only edge-to-edge tiling by regular convex polygons which contains an octagon. It has Schläfli symbol of t{4,4}. Conway calls it a truncated quadrille, constructed as a truncation operation applied to a square tiling (quadrille). Other names used for this pattern include Mediterranean tiling and octagonal tiling, which is often represented by smaller squares, and nonregular octagons which alternate long and short edges.
We study photonic crystal (PhC)-assisted light extraction from gallium nitride (GaN) light-emitting diodes (LEDs). We focus on the issue of omnidirectional extraction, and we introduce a complex crystal lattice, namely the Archimedean tiling, which enables ...
Cao and Yuan obtained a Blichfeldt-type result for the vertex set of the edge-to-edge tiling of the plane by regular hexagons. Observing that the vertex set of every Archimedean tiling is the union of translates of a fixed lattice, we take a more general v ...
SPRINGER HEIDELBERG2019
, ,
We are progressively approaching the physical limits of microcavity LEDs (MC-LEDs) for high brightness, high efficiency LEDs. They are promising high efficiency devices and they offer the very attractive prospect of full planar fabrication process. However ...