In probability and statistics, a compound probability distribution (also known as a mixture distribution or contagious distribution) is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution, with (some of) the parameters of that distribution themselves being random variables.
If the parameter is a scale parameter, the resulting mixture is also called a scale mixture.
The compound distribution ("unconditional distribution") is the result of marginalizing (integrating) over the latent random variable(s) representing the parameter(s) of the parametrized distribution ("conditional distribution").
A compound probability distribution is the probability distribution that results from assuming that a random variable is distributed according to some parametrized distribution with an unknown parameter that is again distributed according to some other distribution . The resulting distribution is said to be the distribution that results from compounding with . The parameter's distribution is also called the mixing distribution or latent distribution. Technically, the unconditional distribution results from marginalizing over , i.e., from integrating out the unknown parameter(s) . Its probability density function is given by:
The same formula applies analogously if some or all of the variables are vectors.
From the above formula, one can see that a compound distribution essentially is a special case of a marginal distribution: The joint distribution of and is given by
and the compound results as its marginal distribution:
If the domain of is discrete, then the distribution is again a special case of a mixture distribution.
The compound distribution will depend on the specific expression of each distribution, as well as which parameter of is distributed according to the distribution , and the parameters of will include any parameters of that are not marginalized, or integrated, out.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In probability theory and statistics, there are several relationships among probability distributions. These relations can be categorized in the following groups: One distribution is a special case of another with a broader parameter space Transforms (function of a random variable); Combinations (function of several variables); Approximation (limit) relationships; Compound relationships (useful for Bayesian inference); Duality; Conjugate priors. A binomial distribution with parameters n = 1 and p is a Bernoulli distribution with parameter p.
In Bayesian statistics, the posterior predictive distribution is the distribution of possible unobserved values conditional on the observed values. Given a set of N i.i.d. observations , a new value will be drawn from a distribution that depends on a parameter , where is the parameter space. It may seem tempting to plug in a single best estimate for , but this ignores uncertainty about , and because a source of uncertainty is ignored, the predictive distribution will be too narrow.
In probability and statistics, a mixture distribution is the probability distribution of a random variable that is derived from a collection of other random variables as follows: first, a random variable is selected by chance from the collection according to given probabilities of selection, and then the value of the selected random variable is realized. The underlying random variables may be random real numbers, or they may be random vectors (each having the same dimension), in which case the mixture distribution is a multivariate distribution.
This course provides in-depth understanding of the most fundamental algorithms in statistical pattern recognition or machine learning (including Deep Learning) as well as concrete tools (as Python sou
This course is an introduction to quantitative risk management that covers standard statistical methods, multivariate risk factor models, non-linear dependence structures (copula models), as well as p
This course presents an introduction to statistical mechanics geared towards materials scientists. The concepts of macroscopic thermodynamics will be related to a microscopic picture and a statistical
Gels made of telechelic polymers connected by reversible cross-linkers are a versatile design platform for biocompatible viscoelastic materials. Their linear response to a step strain displays a fast, near-exponential relaxation when using low-valence cros ...
We construct a measure on the thick points of a Brownian loop soup in a bounded domain DD of the plane with given intensity theta>0θ>0, which is formally obtained by exponentiating the square root of its occupation field. The measure is construct ...
The purpose of this article is to develop and study a decentralized strategy for Pareto optimization of an aggregate cost consisting of regularized risks. Each risk is modeled as the expectation of some loss function with unknown probability distribution, ...