Concept

Relationships among probability distributions

In probability theory and statistics, there are several relationships among probability distributions. These relations can be categorized in the following groups: One distribution is a special case of another with a broader parameter space Transforms (function of a random variable); Combinations (function of several variables); Approximation (limit) relationships; Compound relationships (useful for Bayesian inference); Duality; Conjugate priors. A binomial distribution with parameters n = 1 and p is a Bernoulli distribution with parameter p. A negative binomial distribution with parameters n = 1 and p is a geometric distribution with parameter p. A gamma distribution with shape parameter α = 1 and rate parameter β is an exponential distribution with rate parameter β. A gamma distribution with shape parameter α = v/2 and rate parameter β = 1/2 is a chi-squared distribution with ν degrees of freedom. A chi-squared distribution with 2 degrees of freedom (k = 2) is an exponential distribution with a mean value of 2 (rate λ = 1/2 .) A Weibull distribution with shape parameter k = 1 and rate parameter β is an exponential distribution with rate parameter β. A beta distribution with shape parameters α = β = 1 is a continuous uniform distribution over the real numbers 0 to 1. A beta-binomial distribution with parameter n and shape parameters α = β = 1 is a discrete uniform distribution over the integers 0 to n. A Student's t-distribution with one degree of freedom (v = 1) is a Cauchy distribution with location parameter x = 0 and scale parameter γ = 1. A Burr distribution with parameters c = 1 and k (and scale λ) is a Lomax distribution with shape k (and scale λ.) Multiplying the variable by any positive real constant yields a scaling of the original distribution. Some are self-replicating, meaning that the scaling yields the same family of distributions, albeit with a different parameter: normal distribution, gamma distribution, Cauchy distribution, exponential distribution, Erlang distribution, Weibull distribution, logistic distribution, error distribution, power-law distribution, Rayleigh distribution.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.