Spent fuel pools (SFP) are storage pools (or "ponds" in the United Kingdom) for spent fuel from nuclear reactors. They are typically 40 or more feet (12 m) deep, with the bottom 14 feet (4.3 m) equipped with storage racks designed to hold fuel assemblies removed from reactors. A reactor's local pool is specially designed for the reactor in which the fuel was used and is situated at the reactor site. Such pools are used for short-term cooling of the fuel rods. This allows short-lived isotopes to decay and thus reduces the ionizing radiation and decay heat emanating from the rods. The water cools the fuel and provides radiological protection from its radiation.
Pools also exist on sites remote from reactors, for longer term storage such as the Independent Spent Fuel Storage Installation (ISFSI), located at the Morris Operation, or as a production buffer for 10 to 20 years before being sent for reprocessing or dry cask storage.
While only about 20 feet (about 6 m) of water is needed to keep radiation levels below acceptable levels, the extra depth provides a safety margin and allows fuel assemblies to be manipulated without special shielding to protect the operators.
About a quarter to a third of the total fuel load of a reactor is removed from the core every 12 to 24 months and replaced with fresh fuel. Spent fuel rods generate intense heat and dangerous radiation that must be contained. Fuel is moved from the reactor and manipulated in the pool generally by automated handling systems, although some manual systems are still in use. The fuel bundles fresh from the core are normally segregated for several months for initial cooling before being sorted into other parts of the pool to wait for final disposal. Metal racks keep the fuel in controlled positions for physical protection and for ease of tracking and rearrangement. High-density racks also incorporate boron-10, often as boron carbide (Metamic, Boraflex, Boral, Tetrabor and Carborundum) or other neutron-absorbing material to ensure subcriticality.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course is intended to understand the engineering design of nuclear power plants using the basic principles of reactor physics, fluid flow and heat transfer. This course includes the following: Re
Seminar for PhD/master-students and postdocs on experimental nuclear materials research and simulation for present and future nuclear systems, with some emphasis on advanced manufacturing and analytic
In this course, one acquires an understanding of the basic neutronics interactions occurring in a nuclear fission reactor as well as the conditions for establishing and controlling a nuclear chain rea
Spent nuclear fuel, occasionally called used nuclear fuel, is nuclear fuel that has been irradiated in a nuclear reactor (usually at a nuclear power plant). It is no longer useful in sustaining a nuclear reaction in an ordinary thermal reactor and, depending on its point along the nuclear fuel cycle, it will have different isotopic constituents than when it started. Nuclear fuel rods become progressively more radioactive (and less thermally useful) due to neutron activation as they are fissioned, or "burnt" in the reactor.
High-level waste (HLW) is a type of nuclear waste created by the reprocessing of spent nuclear fuel. It exists in two main forms: First and second cycle raffinate and other waste streams created by nuclear reprocessing. Waste formed by vitrification of liquid high-level waste. Liquid high-level waste is typically held temporarily in underground tanks pending vitrification. Most of the high-level waste created by the Manhattan Project and the weapons programs of the cold war exists in this form because funding for further processing was typically not part of the original weapons programs.
A nuclear flask is a shipping container that is used to transport active nuclear materials between nuclear power station and spent fuel reprocessing facilities. Each shipping container is designed to maintain its integrity under normal transportation conditions and during hypothetical accident conditions. They must protect their contents against damage from the outside world, such as impact or fire. They must also contain their contents from leakage, both for physical leakage and for radiological shielding.
Explores nuclear engineering safety systems, reactor protection, and radioactive material containment, emphasizing safety margins and design base accidents.
Wyoming-type bentonite is one of the materials to be used as part of the Engineered Barrier System (EBS) in deep geological disposal facilities for the safe disposal of spent nuclear fuel.In the KBS-3 type repository, the canisters containing the spent fue ...
The mechanical analysis of nuclear fuel behavior under base-irradiation conditions has traditionally been performed adopting the small-strain approximation. However, many cases of interest for fuel behavior involve the occurrence of large rod deformations ...
Microstructural evolution during in-pile irradiation, radiation damage effects and fission products behavior in UO2 nuclear fuel are key issues in understanding and for the modeling of the performance as well as safety characteristics of nuclear fuels in t ...