En mathématiques, il existe différentes constructions des nombres réels, dont les deux plus connues sont : les coupures de Dedekind, qui définissent, via la théorie des ensembles, un réel comme l'ensemble des rationnels qui lui sont strictement inférieurs ; les suites de Cauchy, qui définissent, via l'analyse, un réel comme une suite de rationnels convergeant vers lui. C'est à partir des années 1860 que la nécessité de présenter une construction des nombres réels se fait de plus en plus pressante, dans le but d'asseoir l'analyse sur des fondements rigoureux. Jusqu'à cette date, l'existence des réels et leurs propriétés sont admises, par exemple par Cauchy dans son cours de 1821. En 1817, Bolzano établit qu'une partie non vide majorée de réels admet une borne supérieure, dans un mémoire resté malheureusement peu répandu et qui a eu peu d'influence jusqu'aux travaux de Weierstrass vers 1865. Les premières constructions, basées sur les suites de Cauchy, sont dues à Méray en 1869, et à Cantor dont les idées furent exposées en 1872 par Heine. Dedekind publie sa construction des réels au moyen des coupures en 1872. En 1878, Dini publie un traité donnant les principales démonstrations sur les nombres réels. Développement décimal Un nombre réel est une quantité qui a pour représentation décimale , où est un entier, chaque est un chiffre entre 0 et 9, et la suite ne se termine pas par une infinité de 9. La définition de est alors le nombre qui satisfait cette double inéquation pour tout k : Cette construction, outre son manque de rigueur sous cette forme, présente divers inconvénients, dont le plus important est la difficulté de donner des algorithmes simples pour la multiplication, et même pour l'addition dans des cas tels que . Terence Tao fait remarquer qu'elle peut être rendue plus naturelle en l'interprétant (comme pour la construction des nombres -adiques) comme la limite projective des ensembles des décimaux à n chiffres après la virgule, munis de règles de calcul arrondi convenables.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (13)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
MATH-101(e): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
MATH-101(g): Analysis I
Étudier les concepts fondamentaux d'analyse et le calcul différentiel et intégral des fonctions réelles d'une variable.
Afficher plus
Séances de cours associées (210)
Organisation, nombres : nombres réels et équations
Introduit des nombres réels, y compris des équations comme x22 sans solutions rationnelles.
Plus de résultats pour Inf/Sup, Densité de Q en R
Couvre inf/sup, partie intégrante des nombres réels et densité des nombres rationnels.
Nombres réels: Propriétés et formules
Explore les nombres réels, y compris le supreme, l'infimum, le maximum et les propriétés minimales.
Afficher plus
Publications associées (37)
MOOCs associés (9)
Analyse I
Le contenu de ce cours correspond à celui du cours d'Analyse I, comme il est enseigné pour les étudiantes et les étudiants de l'EPFL pendant leur premier semestre. Chaque chapitre du cours correspond
Analyse I (partie 1) : Prélude, notions de base, les nombres réels
Concepts de base de l'analyse réelle et introduction aux nombres réels.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.