In chemistry, a salt bridge is a combination of two non-covalent interactions: hydrogen bonding and ionic bonding (Figure 1). Ion pairing is one of the most important noncovalent forces in chemistry, in biological systems, in different materials and in many applications such as ion pair chromatography. It is a most commonly observed contribution to the stability to the entropically unfavorable folded conformation of proteins. Although non-covalent interactions are known to be relatively weak interactions, small stabilizing interactions can add up to make an important contribution to the overall stability of a conformer. Not only are salt bridges found in proteins, but they can also be found in supramolecular chemistry. The thermodynamics of each are explored through experimental procedures to access the free energy contribution of the salt bridge to the overall free energy of the state.
In water, formation of salt bridges or ion pairs is mostly driven by entropy, usually accompanied by unfavorable ΔH contributions on account of desolvation of the interacting ions upon association. Hydrogen bonds contribute to the stability of ion pairs with e.g. protonated ammonium ions, and with anions is formed by deprotonation as in the case of carboxylate, phosphate etc; then the association constants depend on the pH. Entropic driving forces for ion pairing (in absence of significant H-bonding contributions) are also found in methanol as solvent. In nonpolar solvents contact ion pairs with very high association constants are formed,; in the gas phase the association energies of e.g. alkali halides reach up to 200 kJ/mol. The Bjerrum or the Fuoss equation describe ion pair association as function of the ion charges zA and zB and the dielectric constant ε of the medium; a corresponding plot of the stability ΔG vs. zAzB shows for over 200 ion pairs the expected linear correlation for a large variety of ions.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This lecture introduces the basic concepts used to describe the atomic or molecular structure of surfaces and interfaces and the underlying thermodynamic concepts. The influence of interfaces on the p
In chemistry, a non-covalent interaction differs from a covalent bond in that it does not involve the sharing of electrons, but rather involves more dispersed variations of electromagnetic interactions between molecules or within a molecule. The chemical energy released in the formation of non-covalent interactions is typically on the order of 1–5 kcal/mol (1000–5000 calories per 6.02 molecules). Non-covalent interactions can be classified into different categories, such as electrostatic, π-effects, van der Waals forces, and hydrophobic effects.
Supramolecular chemistry refers to the branch of chemistry concerning chemical systems composed of a discrete number of molecules. The strength of the forces responsible for spatial organization of the system range from weak intermolecular forces, electrostatic charge, or hydrogen bonding to strong covalent bonding, provided that the electronic coupling strength remains small relative to the energy parameters of the component.
Aspartic acid (symbol Asp or D; the ionic form is known as aspartate), is an α-amino acid that is used in the biosynthesis of proteins. Like all other amino acids, it contains an amino group and a carboxylic acid. Its α-amino group is in the protonated –NH form under physiological conditions, while its α-carboxylic acid group is deprotonated −COO− under physiological conditions. Aspartic acid has an acidic side chain (CH2COOH) which reacts with other amino acids, enzymes and proteins in the body.
Explores solid-solid interfaces, bond interactions, and elastic energy in homophase interfaces.
Covers the fundamentals of organic electronic materials, including intramolecular electron delocalization, charge formation and transport, and advanced topics.
Explores protein energy states, covalent bonds, salt bridges, and van der Waals interactions.
Supramolecular interactions play an important role in defining the structure and the resulting mechanical properties of materials. For instance, interchain hydrogen-bonding in PAs gives them superior strength and stiffness in engineering materials, while t ...
Beyond the common supramolecular helical polymers in solutions, controlling single-crystal helical self-assembly with precisely defined chirality and architectures has been challenging. Here, we report that simply merging static homochiral amino acids with ...
Le Lac Léman est une sublime scène naturelle. Le projet emmène acteurs et spectateurs, tous confondus et rassemblés, sur un dispositif en gradins, échafaudé sur l’eau, qui crée une seconde scène. Cette structure, qui renverse la configuration du théâtre an ...