Concept

Salt bridge (protein and supramolecular)

Résumé
In chemistry, a salt bridge is a combination of two non-covalent interactions: hydrogen bonding and ionic bonding (Figure 1). Ion pairing is one of the most important noncovalent forces in chemistry, in biological systems, in different materials and in many applications such as ion pair chromatography. It is a most commonly observed contribution to the stability to the entropically unfavorable folded conformation of proteins. Although non-covalent interactions are known to be relatively weak interactions, small stabilizing interactions can add up to make an important contribution to the overall stability of a conformer. Not only are salt bridges found in proteins, but they can also be found in supramolecular chemistry. The thermodynamics of each are explored through experimental procedures to access the free energy contribution of the salt bridge to the overall free energy of the state. In water, formation of salt bridges or ion pairs is mostly driven by entropy, usually accompanied by unfavorable ΔH contributions on account of desolvation of the interacting ions upon association. Hydrogen bonds contribute to the stability of ion pairs with e.g. protonated ammonium ions, and with anions is formed by deprotonation as in the case of carboxylate, phosphate etc; then the association constants depend on the pH. Entropic driving forces for ion pairing (in absence of significant H-bonding contributions) are also found in methanol as solvent. In nonpolar solvents contact ion pairs with very high association constants are formed,; in the gas phase the association energies of e.g. alkali halides reach up to 200 kJ/mol. The Bjerrum or the Fuoss equation describe ion pair association as function of the ion charges zA and zB and the dielectric constant ε of the medium; a corresponding plot of the stability ΔG vs. zAzB shows for over 200 ion pairs the expected linear correlation for a large variety of ions.
À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.