Summary
In computational complexity theory, the unique games conjecture (often referred to as UGC) is a conjecture made by Subhash Khot in 2002. The conjecture postulates that the problem of determining the approximate value of a certain type of game, known as a unique game, has NP-hard computational complexity. It has broad applications in the theory of hardness of approximation. If the unique games conjecture is true and P ≠ NP, then for many important problems it is not only impossible to get an exact solution in polynomial time (as postulated by the P versus NP problem), but also impossible to get a good polynomial-time approximation. The problems for which such an inapproximability result would hold include constraint satisfaction problems, which crop up in a wide variety of disciplines. The conjecture is unusual in that the academic world seems about evenly divided on whether it is true or not. The unique games conjecture can be stated in a number of equivalent ways. The following formulation of the unique games conjecture is often used in hardness of approximation. The conjecture postulates the NP-hardness of the following promise problem known as label cover with unique constraints. For each edge, the colors on the two vertices are restricted to some particular ordered pairs. Unique constraints means that for each edge none of the ordered pairs have the same color for the same node. This means that an instance of label cover with unique constraints over an alphabet of size k can be represented as a directed graph together with a collection of permutations πe: [k] → [k], one for each edge e of the graph. An assignment to a label cover instance gives to each vertex of G a value in the set [k] = {1, 2, ... k}, often called “colours.” File:Unique label cover yes-instance.svg|An instance of unique label cover. The 4 vertices may be assigned the colors red, blue, and green while satisfying the constraints at each edge. File:Unique label cover yes-instance with assignment.svg|A solution to the unique label cover instance.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (2)
CS-455: Topics in theoretical computer science
The students gain an in-depth knowledge of several current and emerging areas of theoretical computer science. The course familiarizes them with advanced techniques, and develops an understanding of f
MATH-301: Ordinary differential equations
Le cours donne une introduction à la théorie des EDO, y compris existence de solutions locales/globales, comportement asymptotique, étude de la stabilité de points stationnaires et applications, en pa
Related lectures (5)
Semi-Definite Programming
Covers semi-definite programming and optimization over positive semidefinite cones.
Optimization Problems: Path Finding and Portfolio Allocation
Covers optimization problems in path finding and portfolio allocation.
Linear Programming Basics
Introduces linear programming basics, including optimization problems, cost functions, simplex algorithm, geometry of linear programs, extreme points, and degeneracy.
Show more
Related publications (22)
Related concepts (4)
Maximum cut
For a graph, a maximum cut is a cut whose size is at least the size of any other cut. That is, it is a partition of the graph's vertices into two complementary sets S and T, such that the number of edges between S and T is as large as possible. Finding such a cut is known as the max-cut problem. The problem can be stated simply as follows. One wants a subset S of the vertex set such that the number of edges between S and the complementary subset is as large as possible.
Semidefinite programming
Semidefinite programming (SDP) is a subfield of convex optimization concerned with the optimization of a linear objective function (a user-specified function that the user wants to minimize or maximize) over the intersection of the cone of positive semidefinite matrices with an affine space, i.e., a spectrahedron. Semidefinite programming is a relatively new field of optimization which is of growing interest for several reasons. Many practical problems in operations research and combinatorial optimization can be modeled or approximated as semidefinite programming problems.
Approximation algorithm
In computer science and operations research, approximation algorithms are efficient algorithms that find approximate solutions to optimization problems (in particular NP-hard problems) with provable guarantees on the distance of the returned solution to the optimal one. Approximation algorithms naturally arise in the field of theoretical computer science as a consequence of the widely believed P ≠ NP conjecture. Under this conjecture, a wide class of optimization problems cannot be solved exactly in polynomial time.
Show more