In algebraic number theory, the Hilbert class field E of a number field K is the maximal abelian unramified extension of K. Its degree over K equals the class number of K and the Galois group of E over K is canonically isomorphic to the ideal class group of K using Frobenius elements for prime ideals in K.
In this context, the Hilbert class field of K is not just unramified at the finite places (the classical ideal theoretic interpretation) but also at the infinite places of K. That is, every real embedding of K extends to a real embedding of E (rather than to a complex embedding of E).
If the ring of integers of K is a unique factorization domain, in particular if , then K is its own Hilbert class field.
Let of discriminant . The field has discriminant and so is an everywhere unramified extension of K, and it is abelian. Using the Minkowski bound, one can show that K has class number 2. Hence, its Hilbert class field is . A non-principal ideal of K is (2,(1+)/2), and in L this becomes the principal ideal ((1+)/2).
The field has class number 3. Its Hilbert class field can be formed by adjoining a root of x3 - x - 1, which has discriminant -23.
To see why ramification at the archimedean primes must be taken into account, consider the real quadratic field K obtained by adjoining the square root of 3 to Q. This field has class number 1 and discriminant 12, but the extension K(i)/K of discriminant 9=32 is unramified at all prime ideals in K, so K admits finite abelian extensions of degree greater than 1 in which all finite primes of K are unramified. This doesn't contradict the Hilbert class field of K being K itself: every proper finite abelian extension of K must ramify at some place, and in the extension K(i)/K there is ramification at the archimedean places: the real embeddings of K extend to complex (rather than real) embeddings of K(i).
By the theory of complex multiplication, the Hilbert class field of an imaginary quadratic field is generated by the value of the elliptic modular function at a generator for the ring of integers (as a Z-module).
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, an algebraic number field (or simply number field) is an extension field of the field of rational numbers such that the field extension has finite degree (and hence is an algebraic field extension). Thus is a field that contains and has finite dimension when considered as a vector space over . The study of algebraic number fields, and, more generally, of algebraic extensions of the field of rational numbers, is the central topic of algebraic number theory.
In mathematics, complex multiplication (CM) is the theory of elliptic curves E that have an endomorphism ring larger than the integers. Put another way, it contains the theory of elliptic functions with extra symmetries, such as are visible when the period lattice is the Gaussian integer lattice or Eisenstein integer lattice. It has an aspect belonging to the theory of special functions, because such elliptic functions, or abelian functions of several complex variables, are then 'very special' functions satisfying extra identities and taking explicitly calculable special values at particular points.
In mathematics, the discriminant of an algebraic number field is a numerical invariant that, loosely speaking, measures the size of the (ring of integers of the) algebraic number field. More specifically, it is proportional to the squared volume of the fundamental domain of the ring of integers, and it regulates which primes are ramified. The discriminant is one of the most basic invariants of a number field, and occurs in several important analytic formulas such as the functional equation of the Dedekind zeta function of K, and the analytic class number formula for K.
This course is aimed to give students an introduction to the theory of algebraic curves, with an emphasis on the interplay between the arithmetic and the geometry of global fields. One of the principl
This year's topic is "Adelic Number Theory" or how the language of adeles and ideles and harmonic analysis on the corresponding spaces can be used to revisit classical questions in algebraic number th
P-adic numbers are a number theoretic analogue of the real numbers, which interpolate between arithmetics, analysis and geometry. In this course we study their basic properties and give various applic
In this paper we study the regularized Petersson product between a holomorphic theta series associated to a positive definite binary quadratic form and a weakly holomorphic weight-one modular form with integral Fourier coefficients. In [18], we proved that ...
Let K be a global field of characteristic not 2. The embedding problem for maximal tori in a classical group G can be described in terms of algebras with involution. The aim of this paper is to give an explicit description of the obstruction group to the H ...
2015
We construct a bipartite Euler system in the sense of Howard for Hilbert modular eigenforms of parallel weight two over totally real fields, generalizing works of Bertolini-Darmon, Longo, Nekovar, Pollack-Weston, and others. The construction has direct app ...