Summary
A theory of everything (TOE), final theory, ultimate theory, unified field theory or master theory is a hypothetical, singular, all-encompassing, coherent theoretical framework of physics that fully explains and links together all aspects of the universe. Finding a theory of everything is one of the major unsolved problems in physics. String theory and M-theory have been proposed as theories of everything. Over the past few centuries, two theoretical frameworks have been developed that, together, most closely resemble a theory of everything. These two theories upon which all modern physics rests are general relativity and quantum mechanics. General relativity is a theoretical framework that only focuses on gravity for understanding the universe in regions of both large scale and high mass: planets, stars, galaxies, clusters of galaxies etc. On the other hand, quantum mechanics is a theoretical framework that only focuses on the three non-gravitational forces for understanding the universe in regions of both very small scale and low mass: subatomic particles, atoms, molecules, etc. Quantum mechanics successfully implemented the Standard Model that describes the three non-gravitational forces: strong nuclear, weak nuclear, and electromagnetic force – as well as all observed elementary particles. General relativity and quantum mechanics have been repeatedly validated in their separate fields of relevance. Since the usual domains of applicability of general relativity and quantum mechanics are so different, most situations require that only one of the two theories be used. The two theories are considered incompatible in regions of extremely small scale – the Planck scale – such as those that exist within a black hole or during the beginning stages of the universe (i.e., the moment immediately following the Big Bang).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (10)
EE-568: Reinforcement learning
This course describes theory and methods for Reinforcement Learning (RL), which revolves around decision making under uncertainty. The course covers classic algorithms in RL as well as recent algorith
ME-615: Introduction to earthquake source physics
This course presents the classical and new approaches required to study the source mechanisms of earthquakes, combining theory and observations in a unified methodology, with a key focus on the mechan
MSE-709: Powder Characterisation and Dispersion
Introduction to some basic methods used for powder characterisation, particle size measurement and a brief introduction to powder dispersion and suspension characterisation. Discussion of the fundamen
Show more