Êtes-vous un étudiant de l'EPFL à la recherche d'un projet de semestre?
Travaillez avec nous sur des projets en science des données et en visualisation, et déployez votre projet sous forme d'application sur Graph Search.
La supersymétrie (abrégée en SuSy) est une symétrie supposée de la physique des particules qui postule une relation profonde entre les particules de spin demi-entier (les fermions) qui constituent la matière et les particules de spin entier (les bosons) véhiculant les interactions. Dans le cadre de la SuSy, chaque fermion est associé à un « superpartenaire » de spin entier, alors que chaque boson est associé à un « superpartenaire » de spin demi-entier. Le modèle standard de la physique des particules a été presque entièrement construit grâce aux concepts de symétrie et d'invariance. L'histoire de la supersymétrie commence dans les années 1960. À cette époque, l'ensemble des symétries considérées appartenaient au groupe de Poincaré. Des physiciens ont alors cherché à étendre ce groupe. On s'intéressa notamment à l'extension de la symétrie de saveur (à ne pas confondre avec de couleur) et à dans un cadre relativiste. Toutes les tentatives échouèrent et un théorème no-go brisa tous les espoirs. Sidney Coleman et publièrent en 1967 un article dans lequel ils démontrèrent que le groupe de Poincaré est le groupe de symétrie le plus général de la matrice S. Leur démonstration se fonde sur les hypothèses suivantes : pour une masse M donnée, il existe un nombre fini de types de particules de masse inférieure à M ; les amplitudes correspondant à des diffusions élastiques sont des fonctions analytiques des variables s (énergie du centre de masse) et de l'angle de diffusion ; soit un état à deux particules, sauf pour certaines valeurs isolées de s ; les opérateurs de symétrie sont définis à travers leurs relations de commutation, ceux-ci forment une algèbre de Lie. C'est le dernier point qui permit de contourner le théorème no-go afin d'introduire la supersymétrie, dans une superalgèbre de Lie. L'un des grands intérêts de la supersymétrie, au niveau phénoménologique, vient de la stabilisation du boson de Higgs, et donc la hiérarchie des masses des particules élémentaires.
Romain Christophe Rémy Fleury, Haoye Qin, Aleksi Antoine Bossart, Zhechen Zhang
Jian Wang, Matthias Finger, Qian Wang, Yiming Li, Matthias Wolf, Varun Sharma, Yi Zhang, Konstantin Androsov, Jan Steggemann, Leonardo Cristella, Xin Chen, Davide Di Croce, Rakesh Chawla, Matteo Galli, Anna Mascellani, João Miguel das Neves Duarte, Tagir Aushev, Lei Zhang, Tian Cheng, Yixing Chen, Werner Lustermann, Andromachi Tsirou, Alexis Kalogeropoulos, Andrea Rizzi, Ioannis Papadopoulos, Paolo Ronchese, Hua Zhang, Siyuan Wang, Tao Huang, David Vannerom, Michele Bianco, Sebastiana Gianì, Sun Hee Kim, Kun Shi, Wei Shi, Abhisek Datta, Jian Zhao, Federica Legger, Gabriele Grosso, Ji Hyun Kim, Donghyun Kim, Zheng Wang, Sanjeev Kumar, Wei Li, Yong Yang, Geng Chen, Ajay Kumar, Ashish Sharma, Georgios Anagnostou, Joao Varela, Csaba Hajdu, Muhammad Ahmad, Ekaterina Kuznetsova, Ioannis Evangelou, Muhammad Shoaib, Milos Dordevic, Meng Xiao, Sourav Sen, Xiao Wang, Kai Yi, Jing Li, Rajat Gupta, Zhen Liu, Muhammad Waqas, Hui Wang, Seungkyu Ha, Long Wang, Pratyush Das, Miao Hu, Anton Petrov, Xin Sun, Xin Gao, Chen Chen, Valérie Scheurer, Giovanni Mocellin, Muhammad Ansar Iqbal, Lukas Layer