A horseshoe magnet is either a permanent magnet or an electromagnet made in the shape of a horseshoe (in other words, in a U-shape). The permanent kind has become the most widely recognized symbol for magnets. It is usually depicted as red and marked with ′North' and 'South' poles. Although rendered obsolete in the 1950s by squat, cylindrical magnets made of modern materials, horseshoe magnets are still regularly shown in elementary school textbooks. Historically, they were a solution to the problem of making a compact magnet that does not destroy itself in its own demagnetizing field.
In 1819, it was discovered that passing electric current through a piece of metal deflected a compass needle. Following this discovery, many other experiments surrounding magnetism were attempted. These experiments culminated in William Sturgeon wrapping wire around a horseshoe-shaped piece of iron and running electric current through the wires creating the first horseshoe magnet.
This was also the first practical electromagnet and the first magnet that could lift more mass than the magnet itself when the seven-ounce magnet was able to lift nine pounds of iron. Sturgeon showed that he could regulate the magnetic field of his horseshoe magnet by increasing or decreasing the amount of current being run through the wires. This would lay the groundwork for development of the electrical telegraph and the future of world-wide telecommunications for the next century and more.
The shape of the magnet was originally created as a replacement for the bar magnet as it makes the magnet stronger. A horseshoe magnet is stronger because both poles of the magnet are closer to each other and in the same plane which allows the magnetic lines of flux to flow along a more direct path between the poles and concentrates the magnetic field.
The shape of the horseshoe magnet also drastically reduces its demagnetization over time. This is due to coercivity also known as the "staying magnetized" ability of a given magnet.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Interactive course addressing bulk and thin-film magnetic materials that provide application-specific functionalities in different modern technologies such as e.g. wind energy harvesting, electric art
This course will be on Electronic Laboratory Notebooks and is aimed at (future) users. Multiple electronic lab notebooks exists. The course will focus on the Cheminfo tools (https://eln.epfl.ch/).
L'étudiant sera capable de concevoir, de réaliser et de programmer une électronique complète de commande de moteur ou d'actionneur. Il saura appliquer la théorie de la commande de moteur sur des systè
Alnico is a family of iron alloys which in addition to iron are composed primarily of aluminium (Al), nickel (Ni), and cobalt (Co), hence the acronym al-ni-co. They also include copper, and sometimes titanium. Alnico alloys are ferromagnetic, and are used to make permanent magnets. Before the development of rare-earth magnets in the 1970s, they were the strongest type of permanent magnet. Other trade names for alloys in this family are: Alni, Alcomax, Hycomax, Columax, and Ticonal.
Coercivity, also called the magnetic coercivity, coercive field or coercive force, is a measure of the ability of a ferromagnetic material to withstand an external magnetic field without becoming demagnetized. Coercivity is usually measured in oersted or ampere/meter units and is denoted HC. An analogous property in electrical engineering and materials science, electric coercivity, is the ability of a ferroelectric material to withstand an external electric field without becoming depolarized.
A magnet is a material or object that produces a magnetic field. This magnetic field is invisible but is responsible for the most notable property of a magnet: a force that pulls on other ferromagnetic materials, such as iron, steel, nickel, cobalt, etc. and attracts or repels other magnets. A permanent magnet is an object made from a material that is magnetized and creates its own persistent magnetic field. An everyday example is a refrigerator magnet used to hold notes on a refrigerator door.
The modern world is heavily reliant on electromagnetic devices to convert mechanical energy into electrical energy and vice versa. These devices are fundamental to powering our society, and the growing need for automated production lines and electrified tr ...
Vector-chiral (VC) antiferromagnetism is a spiral-like ordering of spins which may allow ferroelectricity to occur due to loss of space inversion symmetry. In this Letter we report direct experimental observation of ferroelectricity in the VC phase of beta ...
AMER PHYSICAL SOC2021
, , ,
This article presents the development and validation of a three-dimensional force and torque semi-analytical model for ironless permanent magnet structures. This method relies on the definition of the magnetic flux density generated by permanent magnets in ...