In thermodynamics, Carnot's theorem, developed in 1824 by Nicolas Léonard Sadi Carnot, also called Carnot's rule, is a principle that specifies limits on the maximum efficiency that any heat engine can obtain.
Carnot's theorem states that all heat engines operating between the same two thermal or heat reservoirs cannot have efficiencies greater than a reversible heat engine operating between the same reservoirs. A corollary of this theorem is that every reversible heat engine operating between a pair of heat reservoirs is equally efficient, regardless of the working substance employed or the operation details. Since a Carnot heat engine is also a reversible engine, the efficiency of all the reversible heat engines is determined as the efficiency of the Carnot heat engine that depends solely on the temperatures of its hot and cold reservoirs.
The maximum efficiency (i.e., the Carnot heat engine efficiency) of a heat engine operating between cold and hot reservoirs, denoted as H and C respectively, is the ratio of the temperature difference between the reservoirs to the hot reservoir temperature, expressed in the equation
where T_\mathrm{H} and T_\mathrm{C} are the absolute temperatures of the hot and cold reservoirs, respectively, and the efficiency \eta is the ratio of the work done by the engine (to the surroundings) to the heat drawn out of the hot reservoir (to the engine).
\eta_\text{max} is greater than zero if and only if there is a temperature difference between the two thermal reservoirs. Since \eta_\text{max} is the upper limit of all reversible and irreversible heat engine efficiencies, it is concluded that work from a heat engine can be produced if and only if there is a temperature difference between two thermal reservoirs connecting to the engine.
Carnot's theorem is a consequence of the second law of thermodynamics. Historically, it was based on contemporary caloric theory, and preceded the establishment of the second law.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Le but du cours de Physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
This course builds upon the underlying theory in thermodynamics, reaction kinetics, and transport and applies these methods to electrosynthesis, fuel cell, and battery applications. Special focus is p
The course introduces the basic concepts of thermodynamics and heat transfer, and thermodynamic properties of matter and their calculation. The students will master the concepts of heat, mass, and mom
A Carnot cycle is an ideal thermodynamic cycle proposed by French physicist Sadi Carnot in 1824 and expanded upon by others in the 1830s and 1840s. By Carnot's theorem, it provides an upper limit on the efficiency of any classical thermodynamic engine during the conversion of heat into work, or conversely, the efficiency of a refrigeration system in creating a temperature difference through the application of work to the system.
Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied on various reference points and thermometric substances for definition. The most common scales are the Celsius scale with the unit symbol °C (formerly called centigrade), the Fahrenheit scale (°F), and the Kelvin scale (K), the latter being used predominantly for scientific purposes.
From a scientific and engineering perspective, second-law based exergy analysis is valuable because it provides a number of benefits over energy analysis alone. These benefits include the basis for determining energy quality (or exergy content), enhancing the understanding of fundamental physical phenomena, and improving design, performance evaluation and optimization efforts. In thermodynamics, the exergy of a system is the maximum useful work that can be produced as the system is brought into equilibrium with its environment by an ideal process.
An important part of the electricity production relies on heat conversion. Indeed power plants burn fuels like natural gas, coal or use nuclear fission to produce heat that can be transformed into electricity through a thermodynamic cycle and the mechanica ...
Describing, understanding, explaining and regulating mobility requires transversal approaches. Traditionally, mobility analysis proceeds by partitioning into four differentiated forms according to two dimensions: the temporality of which it is based and th ...
Thermal engineering of metal-organic frameworks for adsorption-based applications is very topical in view of their industrial potential, in particular, since heat management and thermal stability have been identified as important obstacles. Hence, a fundam ...