In thermodynamics, Carnot's theorem, developed in 1824 by Nicolas Léonard Sadi Carnot, also called Carnot's rule, is a principle that specifies limits on the maximum efficiency that any heat engine can obtain.
Carnot's theorem states that all heat engines operating between the same two thermal or heat reservoirs cannot have efficiencies greater than a reversible heat engine operating between the same reservoirs. A corollary of this theorem is that every reversible heat engine operating between a pair of heat reservoirs is equally efficient, regardless of the working substance employed or the operation details. Since a Carnot heat engine is also a reversible engine, the efficiency of all the reversible heat engines is determined as the efficiency of the Carnot heat engine that depends solely on the temperatures of its hot and cold reservoirs.
The maximum efficiency (i.e., the Carnot heat engine efficiency) of a heat engine operating between cold and hot reservoirs, denoted as H and C respectively, is the ratio of the temperature difference between the reservoirs to the hot reservoir temperature, expressed in the equation
where T_\mathrm{H} and T_\mathrm{C} are the absolute temperatures of the hot and cold reservoirs, respectively, and the efficiency \eta is the ratio of the work done by the engine (to the surroundings) to the heat drawn out of the hot reservoir (to the engine).
\eta_\text{max} is greater than zero if and only if there is a temperature difference between the two thermal reservoirs. Since \eta_\text{max} is the upper limit of all reversible and irreversible heat engine efficiencies, it is concluded that work from a heat engine can be produced if and only if there is a temperature difference between two thermal reservoirs connecting to the engine.
Carnot's theorem is a consequence of the second law of thermodynamics. Historically, it was based on contemporary caloric theory, and preceded the establishment of the second law.
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Le but du cours de Physique générale est de donner à l'étudiant les notions de base nécessaires à la compréhension des phénomènes physiques. L'objectif est atteint lorsque l'étudiant est capable de pr
This course builds upon the underlying theory in thermodynamics, reaction kinetics, and transport and applies these methods to electrosynthesis, fuel cell, and battery applications. Special focus is p
The course introduces the basic concepts of thermodynamics and heat transfer, and thermodynamic properties of matter and their calculation. The students will master the concepts of heat, mass, and mom
Le cycle de Carnot est un cycle thermodynamique théorique pour un moteur ditherme, constitué de quatre processus réversibles : une détente isotherme réversible, une dilatation adiabatique réversible (donc isentropique), une compression isotherme réversible, et une compression adiabatique réversible. Quand il est moteur, il s'agit du cycle le plus efficace pour obtenir du travail à partir de deux sources de chaleur de températures constantes, considérées comme des thermostats.
La température est une grandeur physique mesurée à l’aide d’un thermomètre et étudiée en thermométrie. Dans la vie courante, elle est reliée aux sensations de froid et de chaud, provenant du transfert thermique entre le corps humain et son environnement. En physique, elle se définit de plusieurs manières : comme fonction croissante du degré d’agitation thermique des particules (en théorie cinétique des gaz), par l’équilibre des transferts thermiques entre plusieurs systèmes ou à partir de l’entropie (en thermodynamique et en physique statistique).
En thermodynamique, l’exergie est une grandeur physique permettant de mesurer la qualité d'une énergie. C'est la partie utilisable d'un joule. Le travail maximal récupérable est ainsi égal à l’opposé de la variation d’exergie au cours de la transformation. Un système à l'équilibre thermomécanique ou chimique n'a plus aucune valeur. Plus un système est loin de l'équilibre ambiant, plus il est apte à opérer un changement, aptitude sur laquelle repose l'utilité d'une énergie.
Thermal engineering of metal-organic frameworks for adsorption-based applications is very topical in view of their industrial potential, in particular, since heat management and thermal stability have been identified as important obstacles. Hence, a fundam ...
AMER CHEMICAL SOC2019
Describing, understanding, explaining and regulating mobility requires transversal approaches. Traditionally, mobility analysis proceeds by partitioning into four differentiated forms according to two dimensions: the temporality of which it is based and th ...
Routledge2021
An important part of the electricity production relies on heat conversion. Indeed power plants burn fuels like natural gas, coal or use nuclear fission to produce heat that can be transformed into electricity through a thermodynamic cycle and the mechanica ...