Mylonite is a fine-grained, compact metamorphic rock produced by dynamic recrystallization of the constituent minerals resulting in a reduction of the grain size of the rock. Mylonites can have many different mineralogical compositions; it is a classification based on the textural appearance of the rock.
Mylonites are ductilely deformed rocks formed by the accumulation of large shear strain, in ductile fault zones. There are many different views on the formation of mylonites, but it is generally agreed that crystal-plastic deformation must have occurred, and that fracturing and cataclastic flow are secondary processes in the formation of mylonites. Mechanical abrasion of grains by milling does not occur, although this was originally thought to be the process that formed mylonites, which were named from the Greek μύλος mylos, meaning mill. Mylonites form at depths of no less than 4 km.
There are many different mechanisms that accommodate crystal-plastic deformation. In crustal rocks the most important processes are dislocation creep and diffusion creep. Dislocation generation acts to increase the internal energy of crystals. This effect is compensated through grain-boundary-migration recrystallization which reduces the internal energy by increasing the grain boundary area and reducing the grain volume, storing energy at the mineral grain surface. This process tends to organize dislocations into subgrain boundaries. As more dislocations are added to subgrain boundaries, the misorientation across that subgrain boundary will increase until the boundary becomes a high-angle boundary and the subgrain effectively becomes a new grain. This process, sometimes referred to as subgrain rotation recrystallization, acts to reduce the mean grain size. Volume and grain-boundary diffusion, the critical mechanisms in diffusion creep, become important at high temperatures and small grain sizes. Thus some researchers have argued that as mylonites are formed by dislocation creep and dynamic recrystallization, a transition to diffusion creep can occur once the grain size is reduced sufficiently.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Foliation in geology refers to repetitive layering in metamorphic rocks. Each layer can be as thin as a sheet of paper, or over a meter in thickness. The word comes from the Latin folium, meaning "leaf", and refers to the sheet-like planar structure. It is caused by shearing forces (pressures pushing different sections of the rock in different directions), or differential pressure (higher pressure from one direction than in others). The layers form parallel to the direction of the shear, or perpendicular to the direction of higher pressure.
In geology, texture or rock microstructure refers to the relationship between the materials of which a rock is composed. The broadest textural classes are crystalline (in which the components are intergrown and interlocking crystals), fragmental (in which there is an accumulation of fragments by some physical process), aphanitic (in which crystals are not visible to the unaided eye), and glassy (in which the particles are too small to be seen and amorphously arranged).
Metamorphism is the transformation of existing rock (the protolith) to rock with a different mineral composition or texture. Metamorphism takes place at temperatures in excess of , and often also at elevated pressure or in the presence of chemically active fluids, but the rock remains mostly solid during the transformation. Metamorphism is distinct from weathering or diagenesis, which are changes that take place at or just beneath Earth's surface. Various forms of metamorphism exist, including regional, contact, hydrothermal, shock, and dynamic metamorphism.
, ,
While sliding at seismic slip-rates of ∼1 m/s, natural faults undergo an abrupt decrease of shear stress called dynamic weakening. Asperity-scale processes related to flash heating and weakening and, meso-scale (mm-cm) processes involving shear across the ...
AGU2022
, ,
Two severe plastic deformation (SPD) techniques of simple shear extrusion (SSE) and equal channel angular pressing (ECAP) were employed to process an extruded Mg -6Gd -3Y -1.5Ag (wt%) alloy at 553 K for 1, 2, 4 and 6 passes. The microstructural evolutions ...
KEAI PUBLISHING LTD2023
While the development of methylammonium lead iodide (MAPbI(3)) perovskite for photovoltaics has grown rapidly, the growth of high-quality material from vapor processes continues to be difficult due to challenges including crystallinity control. Methylamine ...