Lubrication is the process or technique of using a lubricant to reduce friction and wear and tear in a contact between two surfaces. The study of lubrication is a discipline in the field of tribology.
Lubrication mechanisms such as fluid-lubricated systems are designed so that the applied load is partially or completely carried by hydrodynamic or hydrostatic pressure, which reduces solid body interactions (and consequently friction and wear). Depending on the degree of surface separation, different lubrication regimes can be distinguished.
Adequate lubrication allows smooth, continuous operation of machine elements, reduces the rate of wear, and prevents excessive stresses or seizures at bearings. When lubrication breaks down, components can rub destructively against each other, causing heat, local welding, destructive damage and failure.
As the load increases on the contacting surfaces, distinct situations can be observed with respect to the mode of lubrication, which are called lubrication regimes:
Fluid film lubrication is the lubrication regime in which, through viscous forces, the load is fully supported by the lubricant within the space or gap between the parts in motion relative to one another object (the lubricated conjunction) and solid–solid contact is avoided.
In hydrostatic lubrication, external pressure is applied to the lubricant in the bearing to maintain the fluid lubricant film where it would otherwise be squeezed out.
In hydrodynamic lubrication, the motion of the contacting surfaces, as well as the design of the bearing, pump lubricant around the bearing to maintain the lubricating film. This design of bearing may wear when started, stopped or reversed, as the lubricant film breaks down. The basis of the hydrodynamic theory of lubrication is the Reynolds equation. The governing equations of the hydrodynamic theory of lubrication and some analytical solutions can be found in the reference.
Elastohydrodynamic lubrication: Mostly for nonconforming surfaces or higher load conditions, the bodies suffer elastic strains at the contact.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This introductory course in tribology (science of friction, lubrication and wear) has specific goals : to present the basic principles of tribology, to develop the attitude to analyse tribological and
This course is intended to give to the participants (graduates, researchers and industrial professionals) a solid background in tribology and surface interactions. It covers the fundamentals concepts
Continuum conservation laws (e.g. mass, momentum and energy) will be introduced. Mathematical tools, including basic algebra and calculus of vectors and Cartesian tensors will be taught. Stress and de
An internal combustion engine (ICE or IC engine) is a heat engine in which the combustion of a fuel occurs with an oxidizer (usually air) in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons (piston engine), turbine blades (gas turbine), a rotor (Wankel engine), or a nozzle (jet engine).
A plain bearing, or more commonly sliding contact bearing and slide bearing (in railroading sometimes called a solid bearing, journal bearing, or friction bearing), is the simplest type of bearing, comprising just a bearing surface and no rolling elements. Therefore, the journal (i.e., the part of the shaft in contact with the bearing) slides over the bearing surface. The simplest example of a plain bearing is a shaft rotating in a hole. A simple linear bearing can be a pair of flat surfaces designed to allow motion; e.
A gear is a rotating circular machine part having cut teeth or, in the case of a cogwheel or gearwheel, inserted teeth (called cogs), which mesh with another (compatible) toothed part to transmit (convert) torque and speed. The basic principle behind the operation of gears is analogous to the basic principle of levers. A gear may also be known informally as a cog. Geared devices can change the speed, torque, and direction of a power source.
Surface roughness ubiquitously prevails in natural faults across various length scales. Despite extensive studies highlighting the important role of fault geometry in the dynamics of tectonic earthquakes, whether and how fault roughness affects fluid-induc ...
Washington2024
, ,
Fluids are pervasive in the Earth's crust and saturate fractures and faults. The combination of fluids and gouge layers developing along faults can generate fluids of different viscosities. Such viscous fluids were found to influence the reactivation, fric ...
In this paper, we consider experimental data available for graphene-based nanolubricants to evaluate their convective heat transfer performance by means of computational fluid dynamics (CFD) simulations. Single-phase models with temperature-dependent prope ...