Concept

K-tree

In graph theory, a k-tree is an undirected graph formed by starting with a (k + 1)-vertex complete graph and then repeatedly adding vertices in such a way that each added vertex v has exactly k neighbors U such that, together, the k + 1 vertices formed by v and U form a clique. The k-trees are exactly the maximal graphs with a treewidth of k ("maximal" means that no more edges can be added without increasing their treewidth). They are also exactly the chordal graphs all of whose maximal cliques are the same size k + 1 and all of whose minimal clique separators are also all the same size k. 1-trees are the same as unrooted trees. 2-trees are maximal series–parallel graphs, and include also the maximal outerplanar graphs. Planar 3-trees are also known as Apollonian networks. The graphs that have treewidth at most k are exactly the subgraphs of k-trees, and for this reason they are called partial k-trees. The graphs formed by the edges and vertices of k-dimensional stacked polytopes, polytopes formed by starting from a simplex and then repeatedly gluing simplices onto the faces of the polytope, are k-trees when k ≥ 3. This gluing process mimics the construction of k-trees by adding vertices to a clique. A k-tree is the graph of a stacked polytope if and only if no three (k + 1)-vertex cliques have k vertices in common.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.