Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
We deal with some generalizations of the graph coloring problem on classes of perfect graphs. Namely we consider the μ-coloring problem (upper bounds for the color on each vertex), the precoloring extension problem (a subset of vertices colored beforehand), and a problem generalizing both of them, the (γ,μ)-coloring problem (lower and upper bounds for the color on each vertex). We characterize the complexity of all those problems on clique-trees of different heights, providing polynomial-time algorithms for the cases that are easy. These results have interesting corollaries. First, one can observe on clique-trees of different heights the increasing complexity of the chain k-coloring, μ-coloring, (γ,μ)-coloring, and list-coloring. Second, clique-trees of height 2 are the first known example of a class of graphs where μ-coloring is polynomial-time solvable and precoloring extension is NP-complete, thus being at the same time the first example where μ-coloring is polynomially solvable and (γ,μ)-coloring is NP-complete. Last, we show that theμ-coloring problem on unit interval graphs is NP-complete. These results answer three questions from Bonomo et al. [F. Bonomo, G. Durán, J. Marenco, Exploring the complexity boundary between coloring and list-coloring, Annals of Operations Research 169 (1) (2009) 3–16].