Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Neutron diffraction or elastic neutron scattering is the application of neutron scattering to the determination of the atomic and/or magnetic structure of a material. A sample to be examined is placed in a beam of thermal or cold neutrons to obtain a diffraction pattern that provides information of the structure of the material. The technique is similar to X-ray diffraction but due to their different scattering properties, neutrons and X-rays provide complementary information: X-Rays are suited for superficial analysis, strong x-rays from synchrotron radiation are suited for shallow depths or thin specimens, while neutrons having high penetration depth are suited for bulk samples. The technique requires a source of neutrons. Neutrons are usually produced in a nuclear reactor or spallation source. At a research reactor, other components are needed, including a crystal monochromator (in the case of thermal neutrons), as well as filters to select the desired neutron wavelength. Some parts of the setup may also be movable. For the long-wavelength neutrons, crystals cannot be used and gratings are used instead as diffractive optical components. At a spallation source, the time of flight technique is used to sort the energies of the incident neutrons (higher energy neutrons are faster), so no monochromator is needed, but rather a series of aperture elements synchronized to filter neutron pulses with the desired wavelength. The technique is most commonly performed as powder diffraction, which only requires a polycrystalline powder. Single crystal work is also possible, but the crystals must be much larger than those that are used in single-crystal X-ray crystallography. It is common to use crystals that are about 1 mm3. The technique also requires a device that can detect the neutrons after they have been scattered. Summarizing, the main disadvantage to neutron diffraction is the requirement for a nuclear reactor. For single crystal work, the technique requires relatively large crystals, which are usually challenging to grow.
Andreas Pautz, Vincent Pierre Lamirand, Thomas Jean-François Ligonnet, Axel Guy Marie Laureau
Ellen Fogh, Paola Caterina Forino, Sofie Janas
Henrik Moodysson Rønnow, Jan Hugo Dil, Ivica Zivkovic, Jian Rui Soh, Xupeng Yang