Concept

Frozen orbit

Summary
In orbital mechanics, a frozen orbit is an orbit for an artificial satellite in which natural drifting due to the central body's shape has been minimized by careful selection of the orbital parameters. Typically, this is an orbit in which, over a long period of time, the satellite's altitude remains constant at the same point in each orbit. Changes in the inclination, position of the apsis of the orbit, and eccentricity have been minimized by choosing initial values so that their perturbations cancel out., which results in a long-term stable orbit that minimizes the use of station-keeping propellant. For most spacecraft, changes to orbits are caused by the oblateness of the Earth, gravitational attraction from the sun and moon, solar radiation pressure, and air drag. These are called "perturbing forces". They must be counteracted by maneuvers to keep the spacecraft in the desired orbit. For a geostationary spacecraft, correction maneuvers on the order of 40–50 m/s per year are required to counteract the gravitational forces from the sun and moon which move the orbital plane away from the equatorial plane of the Earth. For sun-synchronous spacecraft, intentional shifting of the orbit plane (called "precession") can be used for the benefit of the mission. For these missions, a near-circular orbit with an altitude of 600–900 km is used. An appropriate inclination (97.8-99.0 degrees) is selected so that the precession of the orbital plane is equal to the rate of movement of the Earth around the sun, about 1 degree per day. As a result, the spacecraft will pass over points on the Earth that have the same time of day during every orbit. For instance, if the orbit is "square to the sun", the vehicle will always pass over points at which it is 6 a.m. on the north-bound portion, and 6 p.m. on the south-bound portion (or vice versa). This is called a "Dawn-Dusk" orbit. Alternatively, if the sun lies in the orbital plane, the vehicle will always pass over places where it is midday on the north-bound leg, and places where it is midnight on the south-bound leg (or vice versa).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.