In aviation and aviation meteorology, a flight level (FL) is an aircraft's altitude at standard air pressure, expressed in hundreds of feet. The air pressure is computed assuming an International Standard Atmosphere pressure of 1013.25 hPa (29.92 inHg) at sea level, and therefore is not necessarily the same as the aircraft's actual altitude, either above sea level or above ground level.
Flight levels are used to ensure safe vertical separation between aircraft, despite natural local variations in atmospheric air pressure. Historically, altitude has been measured using a pressure altimeter, which is essentially a calibrated barometer. An altimeter measures ambient air pressure, which decreases with increasing altitude following the barometric formula. It then calculates and displays the corresponding altitude. If different aircraft's altimeters were not calibrated consistently, then two aircraft could be flying at the same altitude even though their altimeters appeared to show that they were at different altitudes. Flight levels solve this problem by defining altitudes based on a standard air pressure at sea level. All aircraft operating on flight levels calibrate to this setting regardless of the actual sea level pressure.
To display true altitude above sea level, a pilot would need to calibrate the altimeter according to the local air pressure at sea level, to take into account natural variation of pressure over time and in different regions.
Flight levels are described by a number, which is the nominal altitude, or pressure altitude, in hundreds of feet, while being a multiple of 500 ft, therefore always ending in 0 or 5. Therefore, a pressure altitude of is referred to as "flight level 320".
Flight levels are usually designated in writing as FLxxx, where xxx is a two- or three-digit number indicating the pressure altitude in units of . In radio communications, FL290 would be pronounced as "flight level two nine(r) zero."
While use of a standardised pressure setting facilitates separation of aircraft from each other, it does not provide the aircraft's actual height above ground.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Pressure altitude is the altitude in the International Standard Atmosphere (ISA) with the same atmospheric pressure as that of the part of the atmosphere in question. The National Oceanic and Atmospheric Administration (NOAA) published the following formula for directly converting atmospheric pressure in millibars (mb) to pressure altitude in feet (ft): In aviation, pressure altitude is the height above a standard datum plane (SDP), which is a theoretical level where the weight of the atmosphere is as measured by a barometer.
The elevation of a geographic location is its height above or below a fixed reference point, most commonly a reference geoid, a mathematical model of the Earth's sea level as an equipotential gravitational surface (see Geodetic datum § Vertical datum). The term elevation is mainly used when referring to points on the Earth's surface, while altitude or geopotential height is used for points above the surface, such as an aircraft in flight or a spacecraft in orbit, and depth is used for points below the surface.
An altimeter or an altitude meter is an instrument used to measure the altitude of an object above a fixed level. The measurement of altitude is called altimetry, which is related to the term bathymetry, the measurement of depth under water. In 1931, the US Army Air Corps and General Electric tested a sonic altimeter for aircraft, which was considered more reliable and accurate than one that relied on air pressure when heavy fog or rain was present.
The Alaskan Layered Pollution and Chemical Analysis (ALPACA) field campaign investigated the sources and processing of wintertime urban pollution in Fairbanks, Alaska in January and February 2022. Several sites located around the city of Fairbanks collecte ...
Our dataset consists of very high-resolution aerial images (50cm) and a digital elevation model (50cm) that covers approx. 2300 km2 of land above 2000m altitude in the southwestern part of Switzerland. Our land cover labels focus on alpine land cover that ...
IEEE DataPort2023
,
In this report, a preliminary design study of a compact lunar reconnaissance drone module which will assist exploration rovers is presented. It is designed to assist future exploratory rover missions in difficult environments such as PSRs or extreme topogr ...