Concept

Nanoparticle–biomolecule conjugate

A nanoparticle–biomolecule conjugate is a nanoparticle with biomolecules attached to its surface. Nanoparticles are minuscule particles, typically measured in nanometers (nm), that are used in nanobiotechnology to explore the functions of biomolecules. Properties of the ultrafine particles are characterized by the components on their surfaces more so than larger structures, such as cells, due to large surface area-to-volume ratios. Large surface area-to-volume-ratios of nanoparticles optimize the potential for interactions with biomolecules. Major characteristics of nanoparticles include volume, structure, and visual properties that make them valuable in nanobiotechnology. Depending on specific properties of size, structure, and luminescence, nanoparticles can be used for different applications. Imaging techniques are used to identify such properties and give more information about the tested sample. Techniques used to characterize nanoparticles are also useful in studying how nanoparticles interact with biomolecules, such as amino acids or DNA, and include magnetic resonance imaging (MRI), denoted by the solubility of the nanoparticles in water and fluorescent. MRI can be applied in the medical field to visualize structures; atomic force microscopy (AFM) that gives a topographic view of the sample on a substrate; transmission electron microscopy (TEM) that gives a top view, but with a different technique then that of atomic force microscopy; Raman spectroscopy or surface enhanced Raman spectroscopy (SERS) gives information about wavelengths and energy in the sample. ultraviolet-visible spectroscopy (UV-Vis) measures the wavelengths where light is absorbed; X-ray diffraction (XRD) generally gives an idea of the chemical composition of the sample. Nanoparticles Nanomolecules can be created from virtually any element, but the majority produced in today's industry use carbon as the basis upon which the molecules are built around. Carbon can bond with nearly any element, allowing many possibilities when it comes to creating a specific molecule.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (6)
MSE-673: Nanoparticles: from fundamentals to applications
This Summer School examines important scientific aspects regarding the development, characterization and application of nanoparticles for medical applications and provide an in-depth review of corresp
BIOENG-399: Immunoengineering
Immunoengineering is an emerging field where engineering principles are grounded in immunology. This course provides students a broad overview of how engineering approaches can be utilized to study im
MSE-471: Biomaterials (pour MX)
The course introduces the main classes of biomaterials used in the biomedical field. The interactions with biological environment are discussed and challenges highlighted. State of the art examples pe
Show more
Related lectures (32)
Dynamical Theory: Nanoparticle Systems
Covers constructing a dynamical theory for nanoparticle systems, conservation equations, and transport phenomena.
Single Nanoparticle Printing: Top-Down Meets Bottom-Up
Explores single nanoparticle printing, electro-topographical trapping, and nanoparticle-based applications in micro/nanosystem assembly.
Material Engineering in Cancer Immunotherapy
Covers the evasion of immune pressure by tumors, cancer immunotherapies, drug delivery strategies, and the impact of nanoparticle characteristics on tumor penetration.
Show more
Related publications (319)

Dilution versus fractionation: Separation technologies hyphenated with spICP-MS for characterizing metallic nanoparticles in aerosols

Jian Wang, Christian Ludwig, Andrea Testino, Tianyu Cen

The presence of metal salts has become one of the major limitations for measuring metallic nanoparticles (NPs) in single particle inductively coupled plasma mass spectrometry (spICP-MS). Their presence generates a background signal in spICP-MS that can be ...
2024

Photogeneration of Hydrogen: Insights from a Pt(II)-Complex Incorporated into a Covalent Organic Framework

Federico De Biasi, Paolo Costa

Pt(II)-based molecular catalysts stand as a prototypical system in hydrogen evolution reactions (HER) owing to their consistently elevated activity levels. Their integration into heterogeneous systems thus provides an ideal platform to develop catalytic ma ...
Wiley-V C H Verlag Gmbh2024

Development of Hyphenated Analytical Techniques using spICP-MS for Online Characterization of Metallic Nanoparticles in Aerosols

Tianyu Cen

The presence of metallic nanoparticles (NPs) in aerosols has raised concern about their fate in the environment through natural processes and anthropological activities. The state-of-the-art technologies for direct aerosol characterization cannot reach rea ...
EPFL2024
Show more
Related concepts (1)
Nanoparticle
A nanoparticle or ultrafine particle is usually defined as a particle of matter that is between 1 and 100 nanometres (nm) in diameter. The term is sometimes used for larger particles, up to 500 nm, or fibers and tubes that are less than 100 nm in only two directions. At the lowest range, metal particles smaller than 1 nm are usually called atom clusters instead.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.