Concept

Solder paste

Summary
Solder paste is used in the manufacture of printed circuit boards to connect surface mount components to pads on the board. It is also possible to solder through-hole pin in paste components by printing solder paste in and over the holes. The sticky paste temporarily holds components in place; the board is then heated, melting the paste and forming a mechanical bond as well as an electrical connection. The paste is applied to the board by jet printing, stencil printing or syringe; then the components are put in place by a pick-and-place machine or by hand. A majority of the defects in circuit-board assembly are caused due to issues in the solder-paste printing process or due to defects in the solder paste. There are many different types of defects possible, e.g. too much solder, or the solder melts and connects too many wires (bridging), resulting in a short circuit. Insufficient amounts of paste result in incomplete circuits. Head-in-pillow defects, or incomplete coalescence of ball grid array (BGA) sphere and solder paste deposit, is a failure mode that has seen increased frequency since the transition to lead-free soldering. Often missed during inspection, a head-in-pillow (HIP) defect appears like a head resting on a pillow with a visible separation in the solder joint at the interface of the BGA sphere and reflowed paste deposit. An electronics manufacturer needs experience with the printing process, specifically the paste characteristics, to avoid costly re-work on the assemblies. The paste's physical characteristics, like viscosity and flux levels, need to be monitored periodically by performing in-house tests. When making PCBs (printed circuit boards), manufacturers often test the solder paste deposits using SPI (solder paste inspection). SPI systems measure the volume of the solder pads before the components are applied and the solder melted. SPI systems can reduce the incidence of solder-related defects to statistically insignificant amounts.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.