Social metabolism or socioeconomic metabolism is the set of flows of materials and energy that occur between nature and society, between different societies, and within societies. These human-controlled material and energy flows are a basic feature of all societies but their magnitude and diversity largely depend on specific cultures, or sociometabolic regimes.
Social or socioeconomic metabolism is also described as "the self-reproduction and evolution of the biophysical structures of human society. It comprises those biophysical transformation processes, distribution processes, and flows, which are controlled by humans for their purposes. The biophysical structures of society (‘in use stocks’) and socioeconomic metabolism together form the biophysical basis of society."
Social metabolic processes begin with the human appropriation of materials and energy from nature. These can be transformed and circulated to be consumed and excreted finally back to nature itself. Each of these processes has a different environmental impact depending on how it is performed, the amount of materials and energy involved in the process, the area where it occurs, the time available or nature's regenerative capacity.
Social metabolism represents an extension of the metabolism concept from biological organisms like human bodies to the biophysical basis of society. Humans build and operate mines and farms, oil refineries and power stations, factories and infrastructure to supply the energy and material flows needed for the physical reproduction of a specific culture. In-use stocks, which comprise buildings, vehicles, appliances, infrastructure, etc., are built up and maintained by the different industrial processes that are part of social metabolism. These stocks then provide services to people in the form of shelter, transportation, or communication.
Society and its metabolism together form an autopoietic system, a complex system that reproduces itself. Neither culture nor social metabolism can reproduce themselves in isolation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The global hectare (gha) is a measurement unit for the ecological footprint of people or activities and the biocapacity of the Earth or its regions. One global hectare is the world's annual amount of biological production for human use and human waste assimilation, per hectare of biologically productive land and fisheries. It measures production and consumption of different products. It starts with the total biological production and waste assimilation in the world, including crops, forests (both wood production and CO2 absorption), grazing and fishing.
Energy accounting is a system used to measure, analyze and report the energy consumption of different activities on a regular basis. This is done to improve energy efficiency, and to monitor the environment impact of energy consumption. Energy accounting is a system used in energy management systems to measure and analyze energy consumption to improve energy efficiency within an organization. Organisations such as Intel corporation use these systems to track energy usage. Various energy transformations are possible.
Industrial metabolism is a concept to describe the material and energy turnover of industrial systems. It was proposed by Robert Ayres in analogy to the biological metabolism as "the whole integrated collection of physical processes that convert raw materials and energy, plus labour, into finished products and wastes..." In analogy to the biological concept of metabolism, which is used to describe the whole of chemical reactions in, for example, a cell to maintain its functions and reproduce itself, the concept of industrial metabolism describes the chemical reactions, transport processes, and manufacturing activities in industry.
Inland waters are now being recognized are major players of global biogeochemical cycles. They also provide essential ecosystem services such as fresh water and fish, and link continental processes wi
This course provides the bases to understand material and energy production and consumption processes. Students learn how to develop a material flow analysis and apply it to cases of resource manageme
Les enjeux environnementaux doivent être abordés de façon systémique. L'Analyse du Cycle de Vie (ACV) et l'Analyse de Flux de Matière (AFM) sont des méthodes permettant d'évaluer de façon globale les
Neonatal hypoxic-ischemic (HI) encephalopathy (HIE) in term newborns is a leading cause of mortality and chronic disability. Hypothermia (HT) is the only clinically available therapeutic intervention; however, its neuroprotective effects are limited. Lacto ...
Basel2023
, , ,
Approximately 2 billion people worldwide and a significant part of the domestic livestock are infected with soil-transmitted helminths, of which many establish chronic infections causing substantial eco-nomic and welfare burdens. Beside intensive research ...
Magnetic resonance spectroscopy (MRS) is the only technique that can detect endogenous metabolites directly and non-invasively in vivo. It allows to identify different metabolites and analyze the dynamic neurochemical processes in the brain, skeletal muscl ...