Bilayer graphene is a material consisting of two layers of graphene. One of the first reports of bilayer graphene was in the seminal 2004 Science paper by Geim and colleagues, in which they described devices "which contained just one, two, or three atomic layers" Bilayer graphene can exist in the AB, or Bernal-stacked form, where half of the atoms lie directly over the center of a hexagon in the lower graphene sheet, and half of the atoms lie over an atom, or, less commonly, in the AA form, in which the layers are exactly aligned. In Bernal stacked graphene, twin boundaries are common; transitioning from AB to BA stacking. Twisted layers, where one layer is rotated relative to the other, have also been extensively studied. Quantum Monte Carlo methods have been used to calculate the binding energies of AA- and AB-stacked bilayer graphene, which are 11.5(9) and 17.7(9) meV per atom, respectively. This is consistent with the observation that the AB-stacked structure is more stable than the AA-stacked structure. Bilayer graphene can be made by exfoliation from graphite or by chemical vapor deposition (CVD). In 2016, Rodney S. Ruoff and colleagues showed that large single-crystal bilayer graphene could be produced by oxygen-activated chemical vapour deposition. Later in the same year a Korean group reported the synthesis of wafer-scale single-crystal AB-stacked bilayer graphene Like monolayer graphene, bilayer graphene has a zero bandgap and thus behaves like a semimetal. In 2007, researchers predicted that a bandgap could be introduced if an electric displacement field were applied to the two layers: a so-called tunable band gap. An experimental demonstration of a tunable bandgap in bilayer graphene came in 2009. In 2015 researchers observed 1D ballistic electron conducting channels at bilayer graphene domain walls. Another group showed that the band gap of bilayer films on silicon carbide could be controlled by selectively adjusting the carrier concentration.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (9)
EE-567: Semiconductor devices II
Students will learn about understanding the fundamentals and applications of emerging nanoscale devices, materials and concepts. Remark: at least 5 students should be enrolled for the course to be giv
PHYS-756: Lectures on twisted bilayer graphene
Twisted Bilayer Graphene (TBG) is a change of paradigm in condensed matter: with flat topologic bands, it provides a platform for unconventional superconductivity, correlated insulation, Plankian meta
PHYS-407: Frontiers in nanosciences
The students understand the relevant experimental and theoretical concepts of nanoscale science. The course covers basic concepts like quantum size effects and their characterization techniques, and h
Show more
Related lectures (45)
Excitonic Devices: Manipulation and Applications
Explores exciton manipulation in devices and their potential applications for low-power computing and optoelectronic components.
Graphene: Quantum Properties and Nanoribbons
Explores graphene's quantum conductance, special electronic properties, nanoribbon fabrication, and edge effects.
Chemistry: Atomic Structure and Thermodynamics
Covers atomic structure, thermodynamics, material properties, and ideal gas law.
Show more
Related publications (279)

Tuning Pore Size in Graphene in the Angstrom Regime for Highly Selective Ion-Ion Separation

Kumar Varoon Agrawal, Kuang-Jung Hsu, Kangning Zhao, Luis Francisco Villalobos Vazquez de la Parra, Shaoxian Li, Heng-Yu Chi, Wan-Chi Lee, Yuyang Zhang

Zero-dimensional pores spanning only a few angstroms in size in two-dimensional materials such as graphene are some of the most promising systems for designing ion-ion selective membranes. However, the key challenge in the field is that so far a crack-free ...
Washington2024

Functionalized Å-scale Pores in Graphene for Carbon Capture

Kuang-Jung Hsu

Single-layer graphene, hosting a high density of functionalized molecular-sieving atom-thick pores, is considered to be an excellent material for gas separation membranes. These functionalized atom-thick pores enable the shortest transport pathway across t ...
EPFL2024

Electrochemical-repaired porous graphene membranes for precise ion-ion separation

Kumar Varoon Agrawal, Kuang-Jung Hsu, Shuqing Song, Kangning Zhao, Heng-Yu Chi, Zongyao Zhou

The preparation of atom-thick porous lattice hosting & Aring;-scale pores is attractive to achieve a large ion-ion selectivity in combination with a large ion flux. Graphene film is an ideal selective layer for this if high-precision pores can be incorpora ...
Nature Portfolio2024
Show more
Related concepts (1)
Graphene
Graphene (ˈgræfiːn) is an allotrope of carbon consisting of a single layer of atoms arranged in a hexagonal lattice nanostructure. The name is derived from "graphite" and the suffix -ene, reflecting the fact that the graphite allotrope of carbon contains numerous double bonds. Each atom in a graphene sheet is connected to its three nearest neighbors by σ-bonds and a delocalised π-bond, which contributes to a valence band that extends over the whole sheet.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.