In mathematics, in the theory of functions of several complex variables, a domain of holomorphy is a domain which is maximal in the sense that there exists a holomorphic function on this domain which cannot be extended to a bigger domain.
Formally, an open set in the n-dimensional complex space is called a domain of holomorphy if there do not exist non-empty open sets and where is connected, and such that for every holomorphic function on there exists a holomorphic function on with on
In the case, every open set is a domain of holomorphy: we can define a holomorphic function with zeros accumulating everywhere on the boundary of the domain, which must then be a natural boundary for a domain of definition of its reciprocal. For this is no longer true, as it follows from Hartogs' lemma.
For a domain the following conditions are equivalent:
is a domain of holomorphy
is holomorphically convex
is pseudoconvex
is Levi convex - for every sequence of analytic compact surfaces such that for some set we have ( cannot be "touched from inside" by a sequence of analytic surfaces)
has local Levi property - for every point there exist a neighbourhood of and holomorphic on such that cannot be extended to any neighbourhood of
Implications are standard results (for , see Oka's lemma). The main difficulty lies in proving , i.e. constructing a global holomorphic function which admits no extension from non-extendable functions defined only locally. This is called the Levi problem (after E. E. Levi) and was first solved by Kiyoshi Oka, and then by Lars Hörmander using methods from functional analysis and partial differential equations (a consequence of -problem).
If are domains of holomorphy, then their intersection is also a domain of holomorphy.
If is an ascending sequence of domains of holomorphy, then their union is also a domain of holomorphy (see Behnke-Stein theorem).
If and are domains of holomorphy, then is a domain of holomorphy.
The first Cousin problem is always solvable in a domain of holomorphy; this is also true, with additional topological assumptions, for the second Cousin problem.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, in the theory of several complex variables and complex manifolds, a Stein manifold is a complex submanifold of the vector space of n complex dimensions. They were introduced by and named after . A Stein space is similar to a Stein manifold but is allowed to have singularities. Stein spaces are the analogues of affine varieties or affine schemes in algebraic geometry. Suppose is a complex manifold of complex dimension and let denote the ring of holomorphic functions on We call a Stein manifold if the following conditions hold: is holomorphically convex, i.
In mathematics, plurisubharmonic functions (sometimes abbreviated as psh, plsh, or plush functions) form an important class of functions used in complex analysis. On a Kähler manifold, plurisubharmonic functions form a subset of the subharmonic functions. However, unlike subharmonic functions (which are defined on a Riemannian manifold) plurisubharmonic functions can be defined in full generality on complex analytic spaces.
Friedrich Moritz "Fritz" Hartogs (20 May 1874 – 18 August 1943) was a German-Jewish mathematician, known for his work on set theory and foundational results on several complex variables. Hartogs was the son of the merchant Gustav Hartogs and his wife Elise Feist and grew up in Frankfurt am Main. He studied at the Königliche Technische Hochschule Hannover, at the Technische Hochschule Charlottenburg, at the University of Berlin, and at the Ludwig Maximilian University of Munich, graduating with a doctorate in 1903 (supervised by Alfred Pringsheim).
This course is an introduction to the theory of Riemann surfaces. Riemann surfaces naturally appear is mathematics in many different ways: as a result of analytic continuation, as quotients of complex