Summary
In linguistics and philosophy, a vague predicate is one which gives rise to borderline cases. For example, the English adjective "tall" is vague since it is not clearly true or false for someone of middling height. By contrast, the word "prime" is not vague since every number is definitively either prime or not. Vagueness is commonly diagnosed by a predicate's ability to give rise to the Sorites paradox. Vagueness is separate from ambiguity, in which an expression has multiple denotations. For instance the word "bank" is ambiguous since it can refer either to a river bank or to a financial institution, but there are no borderline cases between both interpretations. Vagueness is a major topic of research in philosophical logic, where it serves as a potential challenge to classical logic. Work in formal semantics has sought to provide a compositional semantics for vague expressions in natural language. Work in philosophy of language has addressed implications of vagueness for the theory of meaning, while metaphysicists have considered whether reality itself is vague. The concept of vagueness has philosophical importance. Suppose one wants to come up with a definition of "right" in the moral sense. One wants a definition to cover actions that are clearly right and exclude actions that are clearly wrong, but what does one do with the borderline cases? Surely, there are such cases. Some philosophers say that one should try to come up with a definition that is itself unclear on just those cases. Others say that one has an interest in making his or her definitions more precise than ordinary language, or his or her ordinary concepts, themselves allow; they recommend one advances precising definitions. Vagueness is also a problem which arises in law, and in some cases, judges have to arbitrate regarding whether a borderline case does, or does not, satisfy a given vague concept.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.