**Are you an EPFL student looking for a semester project?**

Work with us on data science and visualisation projects, and deploy your project as an app on top of GraphSearch.

Category# Many-valued logic

Summary

Many-valued logic (also multi- or multiple-valued logic) is a propositional calculus in which there are more than two truth values. Traditionally, in Aristotle's logical calculus, there were only two possible values (i.e., "true" and "false") for any proposition. Classical two-valued logic may be extended to n-valued logic for n greater than 2. Those most popular in the literature are three-valued (e.g., Łukasiewicz's and Kleene's, which accept the values "true", "false", and "unknown"), four-valued, nine-valued, the finite-valued (finitely-many valued) with more than three values, and the infinite-valued (infinitely-many-valued), such as fuzzy logic and probability logic.
It is wrong that the first known classical logician who did not fully accept the law of excluded middle was Aristotle (who, ironically, is also generally considered to be the first classical logician and the "father of [two-valued] logic"). In fact, Aristotle did not contest the universality of the law of excluded middle, but the universality of the bivalence principle: he admitted that this principle did not all apply to future events (De Interpretatione, ch. IX), but he didn't create a system of multi-valued logic to explain this isolated remark. Until the coming of the 20th century, later logicians followed Aristotelian logic, which includes or assumes the law of the excluded middle.
The 20th century brought back the idea of multi-valued logic. The Polish logician and philosopher Jan Łukasiewicz began to create systems of many-valued logic in 1920, using a third value, "possible", to deal with Aristotle's paradox of the sea battle. Meanwhile, the American mathematician, Emil L. Post (1921), also introduced the formulation of additional truth degrees with n ≥ 2, where n are the truth values. Later, Jan Łukasiewicz and Alfred Tarski together formulated a logic on n truth values where n ≥ 2. In 1932, Hans Reichenbach formulated a logic of many truth values where n→∞.

Official source

This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Related concepts (4)

Related categories (13)

Related publications (25)

Related lectures (5)

Fuzzy set operations

Fuzzy set operations are a generalization of crisp set operations for fuzzy sets. There is in fact more than one possible generalization. The most widely used operations are called standard fuzzy set operations; they comprise: fuzzy complements, fuzzy intersections, and fuzzy unions. Let A and B be fuzzy sets that A,B ⊆ U, u is any element (e.g. value) in the U universe: u ∈ U. Standard complement The complement is sometimes denoted by ∁A or A∁ instead of ¬A.

Type-2 fuzzy sets and systems

Type-2 fuzzy sets and systems generalize standard Type-1 fuzzy sets and systems so that more uncertainty can be handled. From the beginning of fuzzy sets, criticism was made about the fact that the membership function of a type-1 fuzzy set has no uncertainty associated with it, something that seems to contradict the word fuzzy, since that word has the connotation of much uncertainty. So, what does one do when there is uncertainty about the value of the membership function? The answer to this question was provided in 1975 by the inventor of fuzzy sets, Lotfi A.

Vagueness

In linguistics and philosophy, a vague predicate is one which gives rise to borderline cases. For example, the English adjective "tall" is vague since it is not clearly true or false for someone of middling height. By contrast, the word "prime" is not vague since every number is definitively either prime or not. Vagueness is commonly diagnosed by a predicate's ability to give rise to the Sorites paradox. Vagueness is separate from ambiguity, in which an expression has multiple denotations.

Set theory

Set theory is the branch of mathematical logic that studies sets, which can be informally described as collections of objects. Although objects of any kind can be collected into a set, set theory, as a branch of mathematics, is mostly concerned with those that are relevant to mathematics as a whole. The modern study of set theory was initiated by the German mathematicians Richard Dedekind and Georg Cantor in the 1870s. In particular, Georg Cantor is commonly considered the founder of set theory.

Artificial neural networks

Artificial neural networks (ANNs, also shortened to neural networks (NNs) or neural nets) are a branch of machine learning models that are built using principles of neuronal organization discovered by connectionism in the biological neural networks constituting animal brains. An ANN is based on a collection of connected units or nodes called artificial neurons, which loosely model the neurons in a biological brain. Each connection, like the synapses in a biological brain, can transmit a signal to other neurons.

First-order logic

First-order logic—also known as predicate logic, quantificational logic, and first-order predicate calculus—is a collection of formal systems used in mathematics, philosophy, linguistics, and computer science. First-order logic uses quantified variables over non-logical objects, and allows the use of sentences that contain variables, so that rather than propositions such as "Socrates is a man", one can have expressions in the form "there exists x such that x is Socrates and x is a man", where "there exists" is a quantifier, while x is a variable.

Introduction to Quantum Chaos

Covers the introduction to Quantum Chaos, classical chaos, sensitivity to initial conditions, ergodicity, and Lyapunov exponents.

Beyond the Standard Model: Hierarchy Problem

Explores the motivation for BSM physics, focusing on the hierarchy problem and possible theoretical solutions.

FSM Design and Synthesis

Explains the design and synthesis of Finite State Machines in logic systems.

In this paper, we propose a new category of current-mode Łukasiewicz OR and AND logic neurons and ensuing logic networks along with their ultra-low power realization. The introduced circuits can operate in a wide range of the input signals varying in-betwe ...

Virtual marketplaces on the Web provide people with great facilities to buy and sell goods similar to conventional markets. In traditional business, reputation is subjectively built for known persons and companies as the deals are made in the course of tim ...

2009In this paper the capability of PSO is employed to deal with the ANFIS inherent shortcomings to extract optimum fuzzy If-Then rules in noisy area arisen from application of nondimentional variables to estimate scouring depth. In the model, a PSO algorithm ...