In materials science, fracture toughness is the critical stress intensity factor of a sharp crack where propagation of the crack suddenly becomes rapid and unlimited. A component's thickness affects the constraint conditions at the tip of a crack with thin components having plane stress conditions and thick components having plane strain conditions. Plane strain conditions give the lowest fracture toughness value which is a material property. The critical value of stress intensity factor in mode I loading measured under plane strain conditions is known as the plane strain fracture toughness, denoted . When a test fails to meet the thickness and other test requirements that are in place to ensure plane strain conditions, the fracture toughness value produced is given the designation . Fracture toughness is a quantitative way of expressing a material's resistance to crack propagation and standard values for a given material are generally available.
Slow self-sustaining crack propagation known as stress corrosion cracking, can occur in a corrosive environment above the threshold and below . Small increments of crack extension can also occur during fatigue crack growth, which after repeated loading cycles, can gradually grow a crack until final failure occurs by exceeding the fracture toughness.
Fracture toughness varies by approximately 4 orders of magnitude across materials. Metals hold the highest values of fracture toughness. Cracks cannot easily propagate in tough materials, making metals highly resistant to cracking under stress and gives their stress–strain curve a large zone of plastic flow. Ceramics have a lower fracture toughness but show an exceptional improvement in the stress fracture that is attributed to their 1.5 orders of magnitude strength increase, relative to metals. The fracture toughness of composites, made by combining engineering ceramics with engineering polymers, greatly exceeds the individual fracture toughness of the constituent materials.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Microstructure is the very small scale structure of a material, defined as the structure of a prepared surface of material as revealed by an optical microscope above 25× magnification. The microstructure of a material (such as metals, polymers, ceramics or composites) can strongly influence physical properties such as strength, toughness, ductility, hardness, corrosion resistance, high/low temperature behaviour or wear resistance. These properties in turn govern the application of these materials in industrial practice.
In mechanics, an impact is when two bodies collide. During this collision, both bodies decelerate. The deceleration causes a high force or shock, applied over a short time period. A high force, over a short duration, usually causes more damage to both bodies than a lower force applied over a proportionally longer duration. At normal speeds, during a perfectly inelastic collision, an object struck by a projectile will deform, and this deformation will absorb most or all of the force of the collision.
In materials science, the Charpy impact test, also known as the Charpy V-notch test, is a standardized high strain rate test which determines the amount of energy absorbed by a material during fracture. Absorbed energy is a measure of the material's notch toughness. It is widely used in industry, since it is easy to prepare and conduct and results can be obtained quickly and cheaply. A disadvantage is that some results are only comparative. The test was pivotal in understanding the fracture problems of ships during World War II.
This course deals with the main aspects of seismic design and assessment of buildings including conceptual design. It covers different structural design and evaluation philosophies for new and existin
Explores fracture mechanics, fatigue testing, and material toughness, emphasizing real-world applications and the importance of understanding critical stress intensity factors.
Explores hardness testing, creep, fracture mechanics, and material toughness measurement.
Covers exercises on fracture of materials, including crack growth and failure stress.
Estimating the stress of reinforcing bars and its variations in service conditions can be useful to determine the reserve capacity of structures or to assess the risk of fatigue in the reinforcement. This paper investigates the use crack width measurements ...
Fiber-polymer composites consist of a polymer matrix and reinforcing fibers made of various materials. These composites exhibit exceptional properties, such as a high strength-to-weight ratio and excellent corrosion resistance, which has led to their incre ...
Modeling the 3D internal crack under compression entails complex fracture mechanics (mode I-II-III fracture), resulting in substantial computational costs and challenges in characterizing fracture morphology characterization for Phase Field Method (PFM) si ...