Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
Deep learning is part of a broader family of machine learning methods, which is based on artificial neural networks with representation learning. The adjective "deep" in deep learning refers to the use of multiple layers in the network. Methods used can be either supervised, semi-supervised or unsupervised. Deep-learning architectures such as deep neural networks, deep belief networks, deep reinforcement learning, recurrent neural networks, convolutional neural networks and transformers have been applied to fields including computer vision, speech recognition, natural language processing, machine translation, bioinformatics, drug design, , climate science, material inspection and board game programs, where they have produced results comparable to and in some cases surpassing human expert performance. Artificial neural networks (ANNs) were inspired by information processing and distributed communication nodes in biological systems. ANNs have various differences from biological brains. Specifically, artificial neural networks tend to be static and symbolic, while the biological brain of most living organisms is dynamic (plastic) and analog. Deep learning is a class of machine learning algorithms that uses multiple layers to progressively extract higher-level features from the raw input. For example, in , lower layers may identify edges, while higher layers may identify the concepts relevant to a human such as digits or letters or faces. From another angle to view deep learning, deep learning refers to ‘computer-simulate’ or ‘automate’ human learning processes from a source (e.g., an image of dogs) to a learned object (dogs). Therefore, a notion coined as “deeper” learning or “deepest” learning makes sense. The deepest learning refers to the fully automatic learning from a source to a final learned object. A deeper learning thus refers to a mixed learning process: a human learning process from a source to a learned semi-object, followed by a computer learning process from the human learned semi-object to a final learned object.
David Atienza Alonso, José Angel Miranda Calero, Jonathan Dan, Christodoulos Kechris
The capabilities of deep learning systems have advanced much faster than our ability to understand them. Whilst the gains from deep neural networks (DNNs) are significant, they are accompanied by a growing risk and gravity of a bad outcome. This is tr ...
Nikolaos Stergiopulos, Sokratis Anagnostopoulos