In mathematics, a submodular set function (also known as a submodular function) is a set function whose value, informally, has the property that the difference in the incremental value of the function that a single element makes when added to an input set decreases as the size of the input set increases. Submodular functions have a natural diminishing returns property which makes them suitable for many applications, including approximation algorithms, game theory (as functions modeling user preferences) and electrical networks. Recently, submodular functions have also found immense utility in several real world problems in machine learning and artificial intelligence, including automatic summarization, multi-document summarization, feature selection, active learning, sensor placement, image collection summarization and many other domains. If is a finite set, a submodular function is a set function , where denotes the power set of , which satisfies one of the following equivalent conditions. For every with and every we have that . For every we have that . For every and such that we have that . A nonnegative submodular function is also a subadditive function, but a subadditive function need not be submodular. If is not assumed finite, then the above conditions are not equivalent. In particular a function defined by if is finite and if is infinite satisfies the first condition above, but the second condition fails when and are infinite sets with finite intersection. A set function is monotone if for every we have that . Examples of monotone submodular functions include: Linear (Modular) functions Any function of the form is called a linear function. Additionally if then f is monotone. Budget-additive functions Any function of the form for each and is called budget additive. Coverage functions Let be a collection of subsets of some ground set . The function for is called a coverage function. This can be generalized by adding non-negative weights to the elements. Entropy Let be a set of random variables.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (2)
CS-455: Topics in theoretical computer science
The students gain an in-depth knowledge of several current and emerging areas of theoretical computer science. The course familiarizes them with advanced techniques, and develops an understanding of f
CS-450: Algorithms II
A first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a reper
Séances de cours associées (5)
Maximisation sous-modulaire
Couvre la maximisation des fonctions sous-modulaires à l'aide de l'algorithme gourmand et de sa garantie d'approximation.
Minimisation des fonctions submodulaires
Couvre les fonctions sous-modulaires et leur minimisation, en mettant l'accent sur les rendements décroissants et l'extension Lovsz.
Convexité de l'extension Lovsz
Explore la convexité de l'extension de Lovsz et la maximisation des fonctions sous-modulaires, en se concentrant sur l'extension des fonctions aux ensembles convexes et en prouvant leur convexité.
Afficher plus
Publications associées (32)

Approximation Algorithms for Allocation and Network Design

Etienne Michel François Bamas

In this thesis, we give new approximation algorithms for some NP-hard problems arising in resource allocation and network design. As a resource allocation problem, we study the Santa Claus problem (also known as the MaxMin Fair Allocation problem) in which ...
EPFL2023

Streaming and Matching Problems with Submodular Functions

Paritosh Garg

Submodular functions are a widely studied topic in theoretical computer science. They have found several applications both theoretical and practical in the fields of economics, combinatorial optimization and machine learning. More recently, there have also ...
EPFL2022

Online Contention Resolution Schemes With Applications To Bayesian Selection Problems

Ola Nils Anders Svensson, Moran Feldman, Rico Zenklusen

We introduce a new rounding technique designed for online optimization problems, which is related to contention resolution schemes, a technique initially introduced in the context of submodular function maximization. Our rounding technique, which we call o ...
2021
Afficher plus
Concepts associés (2)
Utility functions on indivisible goods
Some branches of economics and game theory deal with indivisible goods, discrete items that can be traded only as a whole. For example, in combinatorial auctions there is a finite set of items, and every agent can buy a subset of the items, but an item cannot be divided among two or more agents. It is usually assumed that every agent assigns subjective utility to every subset of the items. This can be represented in one of two ways: An ordinal utility preference relation, usually marked by .
Matroïde
En mathématiques, et plus particulièrement en combinatoire, un matroïde est une structure introduite comme un cadre général pour le concept d'indépendance linéaire. Elle est donc naturellement liée à l'algèbre linéaire (déjà au niveau du vocabulaire : indépendant, base, rang), mais aussi à la théorie des graphes (circuit, cycle), à l'algorithmique (algorithme glouton), et à la géométrie (pour diverses questions liées à la représentation). La notion a été introduite en 1935 par Whitney. Le mot matroïde provient du mot matrice.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.