In combinatorics, a branch of mathematics, a matroid ˈmeɪtrɔɪd is a structure that abstracts and generalizes the notion of linear independence in vector spaces. There are many equivalent ways to define a matroid axiomatically, the most significant being in terms of: independent sets; bases or circuits; rank functions; closure operators; and closed sets or flats. In the language of partially ordered sets, a finite simple matroid is equivalent to a geometric lattice.
Matroid theory borrows extensively from the terminology of both linear algebra and graph theory, largely because it is the abstraction of various notions of central importance in these fields. Matroids have found applications in geometry, topology, combinatorial optimization, network theory and coding theory.
There are many equivalent ways to define a (finite) matroid.
In terms of independence, a finite matroid is a pair , where is a finite set (called the ground set) and is a family of subsets of (called the independent sets) with the following properties:
(I1) The empty set is independent, i.e., .
(I2) Every subset of an independent set is independent, i.e., for each , if then . This is sometimes called the hereditary property, or the downward-closed property.
(I3) If and are two independent sets (i.e., each set is independent) and has more elements than , then there exists such that is in . This is sometimes called the augmentation property or the independent set exchange property.
The first two properties define a combinatorial structure known as an independence system (or abstract simplicial complex). Actually, assuming (I2), property (I1) is equivalent to the fact that at least one subset of is independent, i.e., .
Basis of a matroid
A subset of the ground set that is not independent is called dependent. A maximal independent set—that is, an independent set that becomes dependent upon adding any element of —is called a basis for the matroid. A circuit in a matroid is a minimal dependent subset of —that is, a dependent set whose proper subsets are all independent.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The students gain an in-depth knowledge of several current and emerging areas of theoretical computer science. The course familiarizes them with advanced techniques, and develops an understanding of f
A first graduate course in algorithms, this course assumes minimal background, but moves rapidly. The objective is to learn the main techniques of algorithm analysis and design, while building a reper
We develop a sophisticated framework for solving problems in discrete mathematics through the use of randomness (i.e., coin flipping). This includes constructing mathematical structures with unexpecte
In the mathematical theory of matroids, a graphic matroid (also called a cycle matroid or polygon matroid) is a matroid whose independent sets are the forests in a given finite undirected graph. The dual matroids of graphic matroids are called co-graphic matroids or bond matroids. A matroid that is both graphic and co-graphic is sometimes called a planar matroid (but this should not be confused with matroids of rank 3, which generalize planar point configurations); these are exactly the graphic matroids formed from planar graphs.
In the mathematical theory of matroids, a matroid representation is a family of vectors whose linear independence relation is the same as that of a given matroid. Matroid representations are analogous to group representations; both types of representation provide abstract algebraic structures (matroids and groups respectively) with concrete descriptions in terms of linear algebra. A linear matroid is a matroid that has a representation, and an F-linear matroid (for a field F) is a matroid that has a representation using a vector space over F.
In the mathematical theory of matroids, the rank of a matroid is the maximum size of an independent set in the matroid. The rank of a subset S of elements of the matroid is, similarly, the maximum size of an independent subset of S, and the rank function of the matroid maps sets of elements to their ranks. The rank function is one of the fundamental concepts of matroid theory via which matroids may be axiomatized. Matroid rank functions form an important subclass of the submodular set functions.
We introduce a new rounding technique designed for online optimization problems, which is related to contention resolution schemes, a technique initially introduced in the context of submodular function maximization. Our rounding technique, which we call o ...
2021
, ,
This letter studies the problem of minimizing increasing set functions, equivalently, maximizing decreasing set functions, over the base matroid. This setting has received great interest, since it generalizes several applied problems including actuator and ...
2021
Submodular functions are a widely studied topic in theoretical computer science. They have found several applications both theoretical and practical in the fields of economics, combinatorial optimization and machine learning. More recently, there have also ...