Modal logic is a kind of logic used to represent statements about necessity and possibility. It plays a major role in philosophy and related fields as a tool for understanding concepts such as knowledge, obligation, and causation. For instance, in epistemic modal logic, the formula can be used to represent the statement that is known. In deontic modal logic, that same formula can represent that is a moral obligation. Modal logic considers the inferences that modal statements give rise to. For instance, most epistemic logics treat the formula as a tautology, representing the principle that only true statements can count as knowledge.
Modal logics are formal systems that include unary operators such as and , representing possibility and necessity respectively. For instance the modal formula can be read as "possibly " while can be read as "necessarily ". In the standard relational semantics for modal logic, formulas are assigned truth values relative to a possible world. A formula's truth value at one possible world can depend on the truth values of other formulas at other accessible possible worlds. In particular, is true at a world if is true at some accessible possible world, while is true at a world if is true at every accessible possible world. A variety of proof systems exist which are sound and complete with respect to the semantics one gets by restricting the accessibility relation. For instance, the deontic modal logic D is sound and complete if one requires the accessibility relation to be serial.
While the intuition behind modal logic dates back to antiquity, the first modal axiomatic systems were developed by C. I. Lewis in 1912. The now-standard relational semantics emerged in the mid twentieth century from work by Arthur Prior, Jaakko Hintikka, and Saul Kripke. Recent developments include alternative topological semantics such as neighborhood semantics as well as applications of the relational semantics beyond its original philosophical motivation.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de syn
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
Digital IC Design presents the fundamentals of digital integrated circuit design. The methods and techniques aiming at the fabrication and development of digital integrated circuits are reviewed, the
In logic, temporal logic is any system of rules and symbolism for representing, and reasoning about, propositions qualified in terms of time (for example, "I am always hungry", "I will eventually be hungry", or "I will be hungry until I eat something"). It is sometimes also used to refer to tense logic, a modal logic-based system of temporal logic introduced by Arthur Prior in the late 1950s, with important contributions by Hans Kamp. It has been further developed by computer scientists, notably Amir Pnueli, and logicians.
Logic is the study of correct reasoning. It includes both formal and informal logic. Formal logic is the science of deductively valid inferences or logical truths. It studies how conclusions follow from premises due to the structure of arguments alone, independent of their topic and content. Informal logic is associated with informal fallacies, critical thinking, and argumentation theory. It examines arguments expressed in natural language while formal logic uses formal language.
Relevance logic, also called relevant logic, is a kind of non-classical logic requiring the antecedent and consequent of implications to be relevantly related. They may be viewed as a family of substructural or modal logics. It is generally, but not universally, called relevant logic by British and, especially, Australian logicians, and relevance logic by American logicians. Relevance logic aims to capture aspects of implication that are ignored by the "material implication" operator in classical truth-functional logic, namely the notion of relevance between antecedent and conditional of a true implication.
This article explores how the logic underlying modal practices tends to modulate the population’s responsiveness to improvements in global transport supply. Based on a quantitative survey conducted in 2018–2019 among the working population of the cantons o ...
IntroductionNeuroimaging technology has experienced explosive growth and transformed the study of neural mechanisms across health and disease. However, given the diversity of sophisticated tools for handling neuroimaging data, the field faces challenges in ...
In real-world scenarios, achieving domain generalization (DG) presents significant challenges as models are required to generalize to unknown target distributions. Generalizing to unseen multi-modal distributions poses even greater difficulties due to the ...