In statistics, signal processing, and econometrics, an unevenly (or unequally or irregularly) spaced time series is a sequence of observation time and value pairs (tn, Xn) in which the spacing of observation times is not constant.
Unevenly spaced time series naturally occur in many industrial and scientific domains: natural disasters such as earthquakes, floods, or volcanic eruptions typically occur at irregular time intervals. In observational astronomy, measurements such as spectra of celestial objects are taken at times determined by weather conditions, availability of observation time slots, and suitable planetary configurations. In clinical trials (or more generally, longitudinal studies), a patient's state of health may be observed only at irregular time intervals, and different patients are usually observed at different points in time. Wireless sensors in the Internet of things often transmit information only when a state changes to conserve battery life. There are many more examples in climatology, ecology, high-frequency finance, geology, and signal processing.
A common approach to analyzing unevenly spaced time series is to transform the data into equally spaced observations using some form of interpolation - most often linear - and then to apply existing methods for equally spaced data. However, transforming data in such a way can introduce a number of significant and hard to quantify biases, especially if the spacing of observations is highly irregular.
Ideally, unevenly spaced time series are analyzed in their unaltered form. However, most of the basic theory for time series analysis was developed at a time when limitations in computing resources favored an analysis of equally spaced data, since in this case efficient linear algebra routines can be used and many problems have an explicit solution. As a result, fewer methods currently exist specifically for analyzing unevenly spaced time series data.
The least-squares spectral analysis methods are commonly used for computing a frequency spectrum from such time series without any data alterations.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Least-squares spectral analysis (LSSA) is a method of estimating a frequency spectrum based on a least-squares fit of sinusoids to data samples, similar to Fourier analysis. Fourier analysis, the most used spectral method in science, generally boosts long-periodic noise in the long and gapped records; LSSA mitigates such problems. Unlike in Fourier analysis, data need not be equally spaced to use LSSA.
In statistical signal processing, the goal of spectral density estimation (SDE) or simply spectral estimation is to estimate the spectral density (also known as the power spectral density) of a signal from a sequence of time samples of the signal. Intuitively speaking, the spectral density characterizes the frequency content of the signal. One purpose of estimating the spectral density is to detect any periodicities in the data, by observing peaks at the frequencies corresponding to these periodicities.
In mathematics, a time series is a series of data points indexed (or listed or graphed) in time order. Most commonly, a time series is a sequence taken at successive equally spaced points in time. Thus it is a sequence of discrete-time data. Examples of time series are heights of ocean tides, counts of sunspots, and the daily closing value of the Dow Jones Industrial Average. A time series is very frequently plotted via a run chart (which is a temporal line chart).
Brain-machine interfaces (BMIs) have been applied as new rehabilitation tools for motor disabled individuals. Active involvement of cerebral activity has been shown to enhance neuroplasticity and thus to restore mobility. Various studies have focused on th ...
Frontiers Research Foundation2017
,
Selection bias may arise when data have been chosen in a way that subsequent analysis does not account for. Such bias can arise in climate event attribution studies that are performed rapidly after a devastating "trigger event'', whose occurrence correspon ...
ELSEVIER2023
In this work, we elaborate on two recently discovered invariance principles, according to which transport coefficients are, to a large extent, independent of the microscopic definition of the densities and currents of the conserved quantities being transpo ...