Lecture

Time Series: Multi-Tapering and Parametric Estimation

In course
DEMO: ullamco adipisicing est exercitation
Adipisicing pariatur dolor amet irure minim. Veniam sit est dolore aliqua ex veniam consequat veniam adipisicing ea irure. Exercitation et Lorem do exercitation ut minim dolore cupidatat exercitation excepteur ex adipisicing. Aute ut ipsum voluptate sit. Consequat eiusmod excepteur culpa dolor pariatur tempor ea ut anim.
Login to see this section
Description

This lecture covers the concepts of Multi-Tapering and Parametric Estimation in Time Series analysis. Multi-Tapering involves using a set of tapers to estimate the spectral density, while Parametric Estimation focuses on fitting AR models to time series data. The instructor explains the spectral estimation process, Yule-Walker method, and the importance of AR models in approximating continuous spectra. The lecture also delves into the Whittle Likelihood method for estimating noise variance and the use of Discrete Fourier Transform in analyzing time series data.

Instructor
excepteur nisi
Ex mollit voluptate nulla consequat veniam est id voluptate minim labore officia. In sit minim minim incididunt Lorem aliqua. Aliquip sit do nulla nostrud quis.
Login to see this section
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.